次の和 $S$ を求めます。 $S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \dots + (2n-1) \cdot 3^{n-1}$代数学級数等比数列和の計算2025/5/131. 問題の内容次の和 SSS を求めます。S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \dots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−12. 解き方の手順S=∑k=1n(2k−1)3k−1S = \sum_{k=1}^{n} (2k-1)3^{k-1}S=∑k=1n(2k−1)3k−1 を計算します。まず、3S3S3S を計算します。3S=∑k=1n(2k−1)3k3S = \sum_{k=1}^{n} (2k-1)3^{k}3S=∑k=1n(2k−1)3k3S=1⋅3+3⋅32+5⋅33+⋯+(2(n−1)−1)⋅3n−1+(2n−1)⋅3n3S = 1 \cdot 3 + 3 \cdot 3^2 + 5 \cdot 3^3 + \dots + (2(n-1)-1) \cdot 3^{n-1} + (2n-1) \cdot 3^{n}3S=1⋅3+3⋅32+5⋅33+⋯+(2(n−1)−1)⋅3n−1+(2n−1)⋅3n次に、S−3SS - 3SS−3S を計算します。−2S=∑k=1n(2k−1)3k−1−∑k=1n(2k−1)3k-2S = \sum_{k=1}^{n} (2k-1)3^{k-1} - \sum_{k=1}^{n} (2k-1)3^{k}−2S=∑k=1n(2k−1)3k−1−∑k=1n(2k−1)3k−2S=1⋅1+∑k=2n(2k−1)3k−1−∑k=1n−1(2k−1)3k−(2n−1)⋅3n-2S = 1 \cdot 1 + \sum_{k=2}^{n} (2k-1)3^{k-1} - \sum_{k=1}^{n-1} (2k-1)3^{k} - (2n-1) \cdot 3^{n}−2S=1⋅1+∑k=2n(2k−1)3k−1−∑k=1n−1(2k−1)3k−(2n−1)⋅3n−2S=1+∑k=1n−1(2(k+1)−1)3k−∑k=1n−1(2k−1)3k−(2n−1)⋅3n-2S = 1 + \sum_{k=1}^{n-1} (2(k+1)-1)3^{k} - \sum_{k=1}^{n-1} (2k-1)3^{k} - (2n-1) \cdot 3^{n}−2S=1+∑k=1n−1(2(k+1)−1)3k−∑k=1n−1(2k−1)3k−(2n−1)⋅3n−2S=1+∑k=1n−1(2k+1)3k−∑k=1n−1(2k−1)3k−(2n−1)⋅3n-2S = 1 + \sum_{k=1}^{n-1} (2k+1)3^{k} - \sum_{k=1}^{n-1} (2k-1)3^{k} - (2n-1) \cdot 3^{n}−2S=1+∑k=1n−1(2k+1)3k−∑k=1n−1(2k−1)3k−(2n−1)⋅3n−2S=1+∑k=1n−1((2k+1)−(2k−1))3k−(2n−1)⋅3n-2S = 1 + \sum_{k=1}^{n-1} ((2k+1) - (2k-1))3^{k} - (2n-1) \cdot 3^{n}−2S=1+∑k=1n−1((2k+1)−(2k−1))3k−(2n−1)⋅3n−2S=1+∑k=1n−12⋅3k−(2n−1)⋅3n-2S = 1 + \sum_{k=1}^{n-1} 2 \cdot 3^{k} - (2n-1) \cdot 3^{n}−2S=1+∑k=1n−12⋅3k−(2n−1)⋅3n−2S=1+2∑k=1n−13k−(2n−1)⋅3n-2S = 1 + 2 \sum_{k=1}^{n-1} 3^{k} - (2n-1) \cdot 3^{n}−2S=1+2∑k=1n−13k−(2n−1)⋅3n等比数列の和の公式を用いると、∑k=1n−13k=3(3n−1−1)3−1=3n−32\sum_{k=1}^{n-1} 3^{k} = \frac{3(3^{n-1}-1)}{3-1} = \frac{3^n - 3}{2}∑k=1n−13k=3−13(3n−1−1)=23n−3 となります。−2S=1+2⋅3n−32−(2n−1)⋅3n-2S = 1 + 2 \cdot \frac{3^n - 3}{2} - (2n-1) \cdot 3^{n}−2S=1+2⋅23n−3−(2n−1)⋅3n−2S=1+3n−3−(2n−1)⋅3n-2S = 1 + 3^n - 3 - (2n-1) \cdot 3^{n}−2S=1+3n−3−(2n−1)⋅3n−2S=3n−2−(2n−1)⋅3n-2S = 3^n - 2 - (2n-1) \cdot 3^{n}−2S=3n−2−(2n−1)⋅3n−2S=3n(1−2n+1)−2-2S = 3^n(1 - 2n + 1) - 2−2S=3n(1−2n+1)−2−2S=3n(2−2n)−2-2S = 3^n(2 - 2n) - 2−2S=3n(2−2n)−2−2S=2(1−n)3n−2-2S = 2(1-n)3^n - 2−2S=2(1−n)3n−2S=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+13. 最終的な答えS=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+1