与えられた4つの式を展開しなさい。代数学展開多項式2025/5/131. 問題の内容与えられた4つの式を展開しなさい。2. 解き方の手順(1) (x+y+3)(x+y−5)(x + y + 3)(x + y - 5)(x+y+3)(x+y−5)x+y=Ax + y = Ax+y=A と置換すると、(A+3)(A−5)=A2−2A−15(A + 3)(A - 5) = A^2 - 2A - 15(A+3)(A−5)=A2−2A−15AAA を x+yx + yx+y に戻すと、(x+y)2−2(x+y)−15=x2+2xy+y2−2x−2y−15(x + y)^2 - 2(x + y) - 15 = x^2 + 2xy + y^2 - 2x - 2y - 15(x+y)2−2(x+y)−15=x2+2xy+y2−2x−2y−15(2) (a+b+c)2(a + b + c)^2(a+b+c)2(a+b+c)2=(a+b+c)(a+b+c)(a + b + c)^2 = (a + b + c)(a + b + c)(a+b+c)2=(a+b+c)(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)= a(a + b + c) + b(a + b + c) + c(a + b + c)=a(a+b+c)+b(a+b+c)+c(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2= a^2 + ab + ac + ba + b^2 + bc + ca + cb + c^2=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2bc+2ca= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca=a2+b2+c2+2ab+2bc+2ca(3) (a−b−6)2(a - b - 6)^2(a−b−6)2(a−b−6)2=(a−b−6)(a−b−6)(a - b - 6)^2 = (a - b - 6)(a - b - 6)(a−b−6)2=(a−b−6)(a−b−6)=a(a−b−6)−b(a−b−6)−6(a−b−6)= a(a - b - 6) - b(a - b - 6) - 6(a - b - 6)=a(a−b−6)−b(a−b−6)−6(a−b−6)=a2−ab−6a−ba+b2+6b−6a+6b+36= a^2 - ab - 6a - ba + b^2 + 6b - 6a + 6b + 36=a2−ab−6a−ba+b2+6b−6a+6b+36=a2+b2−2ab−12a+12b+36= a^2 + b^2 - 2ab - 12a + 12b + 36=a2+b2−2ab−12a+12b+36(4) (a+b+3)(a−b+3)(a + b + 3)(a - b + 3)(a+b+3)(a−b+3)(a+b+3)(a−b+3)=((a+3)+b)((a+3)−b)(a + b + 3)(a - b + 3) = ((a + 3) + b)((a + 3) - b)(a+b+3)(a−b+3)=((a+3)+b)((a+3)−b)a+3=Aa + 3 = Aa+3=A と置換すると、(A+b)(A−b)=A2−b2(A + b)(A - b) = A^2 - b^2(A+b)(A−b)=A2−b2AAA を a+3a + 3a+3 に戻すと、(a+3)2−b2=a2+6a+9−b2(a + 3)^2 - b^2 = a^2 + 6a + 9 - b^2(a+3)2−b2=a2+6a+9−b2=a2−b2+6a+9= a^2 - b^2 + 6a + 9=a2−b2+6a+93. 最終的な答え(1) x2+2xy+y2−2x−2y−15x^2 + 2xy + y^2 - 2x - 2y - 15x2+2xy+y2−2x−2y−15(2) a2+b2+c2+2ab+2bc+2caa^2 + b^2 + c^2 + 2ab + 2bc + 2caa2+b2+c2+2ab+2bc+2ca(3) a2+b2−2ab−12a+12b+36a^2 + b^2 - 2ab - 12a + 12b + 36a2+b2−2ab−12a+12b+36(4) a2−b2+6a+9a^2 - b^2 + 6a + 9a2−b2+6a+9