$(\sqrt{3} + \sqrt{5})^2$ を展開し、簡略化する問題です。展開した結果を $a + b\sqrt{c}$ の形に変形し、$a$, $b$, $c$ の値を求めます。

代数学展開平方根式の簡略化根号
2025/6/4

1. 問題の内容

(3+5)2(\sqrt{3} + \sqrt{5})^2 を展開し、簡略化する問題です。展開した結果を a+bca + b\sqrt{c} の形に変形し、aa, bb, cc の値を求めます。

2. 解き方の手順

(3+5)2(\sqrt{3} + \sqrt{5})^2 を展開します。
(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 の公式を使用します。
(3+5)2=(3)2+2×3×5+(5)2(\sqrt{3} + \sqrt{5})^2 = (\sqrt{3})^2 + 2 \times \sqrt{3} \times \sqrt{5} + (\sqrt{5})^2
=3+215+5= 3 + 2\sqrt{15} + 5
=8+215= 8 + 2\sqrt{15}
よって、(3+5)2=(3)2+235+(5)2=8+215(\sqrt{3} + \sqrt{5})^2 = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{5} + (\sqrt{5})^2 = 8 + 2\sqrt{15}

3. 最終的な答え

ソ: 3
タ: 2
チ: 5
ツ: 8
テ: 2
ト: 15

「代数学」の関連問題

$A$ と $B$ を $m \times n$ 行列とするとき、行列の積 $(E_m \ E_m) \begin{pmatrix} A & O_{mn} \\ O_{mn} & B \end{pma...

線形代数行列行列の積単位行列零行列
2025/6/6

問題5-1では、ベクトル $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ と $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ が与えられた対...

線形代数一次変換回転対称移動変換行列図形
2025/6/6

与えられた数列の一般項 $a_n$ を、階差数列を利用して求める問題です。 (1) 1, 2, 4, 7, 11, ... (2) 2, 3, 5, 9, 17, ...

数列一般項階差数列等差数列等比数列Σ (シグマ)
2025/6/6

ベクトル $a_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $a_...

線形代数ベクトル線形結合線形従属ベクトル空間一次独立
2025/6/6

ベクトル $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ に対して、以下の変換を行った後のベクトルを求める問題です。 (1) $y$軸について対...

線形代数ベクトル行列変換回転対称移動
2025/6/6

与えられた2次不等式 $x^2 + 2ax - 3a^2 \le 0$ を解け。

二次不等式因数分解場合分け
2025/6/6

実数 $m$ に対して、二次方程式 $x^2 + 2(2m-1)x + 4m^2 - 9 = 0$ が、重解を含めて2つの負の解を持つような、$m$ の値の範囲を求める問題です。

二次方程式判別式解の公式解の符号不等式
2025/6/6

等式 $(x-2y)^2 + (2x+y)^2 = 5(x^2 + y^2)$ を証明するために、左辺 $(x-2y)^2 + (2x+y)^2$ を計算します。

等式の証明式の展開代数計算
2025/6/6

三次方程式 $x^3 - x^2 + x - 1 = 0$ を解き、解 $x = \text{①}, \pm \text{②}i$ の $\text{①}$ と $\text{②}$ に当てはまる数値...

三次方程式因数分解複素数
2025/6/6

与えられた4次方程式 $x^4 - 5x^2 + 4 = 0$ を解き、$x = \pm 1, \pm \text{②}$ の形式で表したときの②に当てはまる数値を求める問題です。

方程式4次方程式二次方程式因数分解解の公式
2025/6/6