問題(12)は、五角形の外角の角度がいくつか与えられており、残りの1つの外角 $x$ の大きさを求める問題です。与えられている角度は78°, 66°, $x$, 40°, 103°です。

幾何学多角形外角五角形角度
2025/3/21
わかりました。画像にある問題のうち、問題(12)を解きます。

1. 問題の内容

問題(12)は、五角形の外角の角度がいくつか与えられており、残りの1つの外角 xx の大きさを求める問題です。与えられている角度は78°, 66°, xx, 40°, 103°です。

2. 解き方の手順

五角形の外角の和は常に360°です。
したがって、与えられた外角の角度を足し合わせると360°になります。
78+66+x+40+103=36078^\circ + 66^\circ + x + 40^\circ + 103^\circ = 360^\circ
287+x=360287^\circ + x = 360^\circ
x=360287x = 360^\circ - 287^\circ
x=73x = 73^\circ

3. 最終的な答え

x=73x = 73^\circ

「幾何学」の関連問題

平面上の点 $(1,-4)$ を正六角形の1つの頂点とし、原点がその正六角形の対角線の交点であるとき、残りの5つの頂点の座標を求める問題です。

正六角形座標回転行列ベクトル
2025/5/19

問題は、2点A,B間の距離、線分ABを2:1に内分する点と外分する点の座標、直線$l$と点Aが与えられたときに、点Aを通り$l$に平行な直線の方程式、点Aを通り$l$に垂直な直線の方程式、点Aと直線$...

座標平面距離内分点外分点直線の方程式平行垂直点と直線の距離
2025/5/19

(1) 点 $(3,2)$ を原点の周りに $15^\circ$ 回転させた点の座標を求めよ。 (2) 点 $(1,4)$ を1つの頂点とし、原点が対角線の交点であるような正六角形の残りの5頂点を求め...

座標回転回転行列正六角形三角関数
2025/5/19

一辺の長さが4の正四面体OABCに球が内接している。 (1) 三角形OABの面積 $S_1$ を求める。 (2) 正四面体OABCの体積 $V_1$ を求める。 (3) 内接球の半径 $r$ を求める...

正四面体体積表面積内接球三平方の定理
2025/5/19

円 $x^2 + y^2 + 2x + 4y - 4 = 0$ の接線で、直線 $y = -\frac{1}{2}x$ に垂直なものの接線の方程式と接点の座標を求める。

接線接線の方程式点の座標垂直
2025/5/19

円 $x^2 + y^2 + 2x + 4y - 4 = 0$ の接線で、直線 $y = -\frac{1}{2}x$ に垂直なものを求める問題です。

接線直交点の距離方程式
2025/5/19

底面の半径が $a$ cm, 高さが $b$ cm の円柱Aがある。円柱Aの底面の半径を $r$ 倍にし、高さを $\frac{1}{r}$ 倍にした円柱Bを作るとき、円柱Bの体積は、円柱Aの体積の何...

体積円柱相似
2025/5/19

底面の半径が $a$ cm、高さが $b$ cmの円柱Aがある。円柱Aの底面の半径を2倍にし、高さを1/2倍にした円柱Bを作るとき、円柱Bの体積は円柱Aの体積の何倍になるか答えよ。

体積円柱相似
2025/5/19

与えられた4つの点A, B, C, Dがそれぞれどの象限に位置するかを答える問題です。点の座標は次の通りです。 A(2, 3) B(2, -3) C(-2, 3) D(-2, -3)

座標平面象限座標
2025/5/19

問題は、与えられた座標を持つ点が、どの象限に位置するかを答える問題です。与えられた点は、A(2, 3), B(2, -3), C(-2, 3), D(-2, -3)の4点です。

座標平面象限座標
2025/5/19