問題は式 $a^2 + 2a - 3$ を因数分解することです。

代数学因数分解二次式
2025/5/14

1. 問題の内容

問題は式 a2+2a3a^2 + 2a - 3 を因数分解することです。

2. 解き方の手順

この二次式を因数分解します。
与えられた二次式は a2+2a3a^2 + 2a - 3 です。
定数項が-3なので、掛けて-3になり、足して2になる2つの数を見つけます。
これらの数は3と-1です。
したがって、二次式は次のように因数分解できます。
a2+2a3=(a+3)(a1)a^2 + 2a - 3 = (a + 3)(a - 1)

3. 最終的な答え

(a+3)(a1)(a + 3)(a - 1)

「代数学」の関連問題

和が2、積が-1となる2つの数を求めよ。

二次方程式解の公式連立方程式
2025/5/15

与えられた式 $2x^2 + xy - y^2 - 3x + 1$ を因数分解または整理せよという問題です。

因数分解多項式2変数
2025/5/15

与えられた2次方程式 $x^2 - 7x - 60 = 0$ を解く。

二次方程式因数分解解の公式
2025/5/15

数列$\{a_n\}$の初項から第$n$項までの和$S_n$が、$S_n = n^3 - 40n^2 + 80n$ $(n=1,2,3,\dots)$で表されるとき、$a_1$と$a_n$を求める問題...

数列漸化式級数
2025/5/15

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n = 3a_n + n + 1$ ( $n=1, 2, 3, \dots$ ) を満たすとき、以下の問いに答える。 ...

数列漸化式等比数列和の公式
2025/5/15

与えられた2次方程式の解を求めます。 与えられた2次方程式は $x^2 + 2(a-1)x + a^2 - 3a + 4 = 0$ です。

二次方程式解の公式根の判別式
2025/5/15

関数 $y = \frac{16}{x}$ について、$x$ の値が2から4まで増加するときの変化の割合を求めよ。

関数変化の割合分数
2025/5/15

2次方程式 $x^2 + (a-3)x + 1 = 0$ が重解を持つとき、定数 $a$ の値とその重解を求めよ。

二次方程式判別式重解
2025/5/15

$\sum_{k=1}^{n} (k^2 + 2k + 3)$ を計算する問題です。

シグマ数列公式適用計算
2025/5/15

問題は、$(a-b)^3 + (b-c)^3 + (c-a)^3$ を簡単にすることです。

因数分解式の展開恒等式
2025/5/15