$x = \sqrt{2}-1$ のとき、$x^5 + \frac{1}{x^5}$ の値を求めます。代数学式の計算有理化累乗展開2025/5/141. 問題の内容x=2−1x = \sqrt{2}-1x=2−1 のとき、x5+1x5x^5 + \frac{1}{x^5}x5+x51 の値を求めます。2. 解き方の手順まず、1x\frac{1}{x}x1を計算します。1x=12−1=2+1(2−1)(2+1)=2+12−1=2+1\frac{1}{x} = \frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+1x1=2−11=(2−1)(2+1)2+1=2−12+1=2+1次に、x+1xx+\frac{1}{x}x+x1 を計算します。x+1x=(2−1)+(2+1)=22x + \frac{1}{x} = (\sqrt{2}-1) + (\sqrt{2}+1) = 2\sqrt{2}x+x1=(2−1)+(2+1)=22ここで、x2+1x2x^2 + \frac{1}{x^2}x2+x21 と x3+1x3x^3 + \frac{1}{x^3}x3+x31 を計算します。x2+1x2=(x+1x)2−2=(22)2−2=8−2=6x^2 + \frac{1}{x^2} = \left(x+\frac{1}{x}\right)^2 - 2 = (2\sqrt{2})^2 - 2 = 8 - 2 = 6x2+x21=(x+x1)2−2=(22)2−2=8−2=6x3+1x3=(x+1x)3−3(x+1x)=(22)3−3(22)=162−62=102x^3 + \frac{1}{x^3} = \left(x+\frac{1}{x}\right)^3 - 3\left(x+\frac{1}{x}\right) = (2\sqrt{2})^3 - 3(2\sqrt{2}) = 16\sqrt{2} - 6\sqrt{2} = 10\sqrt{2}x3+x31=(x+x1)3−3(x+x1)=(22)3−3(22)=162−62=102最後に、x5+1x5x^5 + \frac{1}{x^5}x5+x51 を計算します。x5+1x5=(x2+1x2)(x3+1x3)−(x+1x)=6(102)−22=602−22=582x^5 + \frac{1}{x^5} = \left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right) - \left(x+\frac{1}{x}\right) = 6(10\sqrt{2}) - 2\sqrt{2} = 60\sqrt{2} - 2\sqrt{2} = 58\sqrt{2}x5+x51=(x2+x21)(x3+x31)−(x+x1)=6(102)−22=602−22=5823. 最終的な答え58258\sqrt{2}582