(1) $\lim_{x \to 0} \frac{1-\cos 3x}{x^2}$ を求める。 (2) $\lim_{x \to 0} \frac{\sin x^2}{1-\cos x}$ を求める。解析学極限三角関数ロピタルの定理2025/5/141. 問題の内容(1) limx→01−cos3xx2\lim_{x \to 0} \frac{1-\cos 3x}{x^2}limx→0x21−cos3x を求める。(2) limx→0sinx21−cosx\lim_{x \to 0} \frac{\sin x^2}{1-\cos x}limx→01−cosxsinx2 を求める。2. 解き方の手順(1)limx→01−cos3xx2\lim_{x \to 0} \frac{1-\cos 3x}{x^2}limx→0x21−cos3xを求める。1−cos3x=2sin23x21 - \cos 3x = 2 \sin^2 \frac{3x}{2}1−cos3x=2sin223xより、limx→01−cos3xx2=limx→02sin23x2x2=2limx→0sin23x2x2\lim_{x \to 0} \frac{1-\cos 3x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{3x}{2}}{x^2} = 2 \lim_{x \to 0} \frac{\sin^2 \frac{3x}{2}}{x^2}limx→0x21−cos3x=limx→0x22sin223x=2limx→0x2sin223x=2limx→0(sin3x2x)2=2limx→0(sin3x23x2⋅32)2= 2 \lim_{x \to 0} \left( \frac{\sin \frac{3x}{2}}{x} \right)^2 = 2 \lim_{x \to 0} \left( \frac{\sin \frac{3x}{2}}{\frac{3x}{2}} \cdot \frac{3}{2} \right)^2=2limx→0(xsin23x)2=2limx→0(23xsin23x⋅23)2=2(limx→0sin3x23x2⋅limx→032)2=2(1⋅32)2=2⋅94=92= 2 \left( \lim_{x \to 0} \frac{\sin \frac{3x}{2}}{\frac{3x}{2}} \cdot \lim_{x \to 0} \frac{3}{2} \right)^2 = 2 \left( 1 \cdot \frac{3}{2} \right)^2 = 2 \cdot \frac{9}{4} = \frac{9}{2}=2(limx→023xsin23x⋅limx→023)2=2(1⋅23)2=2⋅49=29(2)limx→0sinx21−cosx\lim_{x \to 0} \frac{\sin x^2}{1-\cos x}limx→01−cosxsinx2を求める。sinx2∼x2\sin x^2 \sim x^2sinx2∼x2 (x→0x \to 0x→0), 1−cosx=2sin2x2∼2(x2)2=x221-\cos x = 2 \sin^2 \frac{x}{2} \sim 2 (\frac{x}{2})^2 = \frac{x^2}{2}1−cosx=2sin22x∼2(2x)2=2x2 (x→0x \to 0x→0)なので、limx→0sinx21−cosx=limx→0x2x22=limx→0x2x22=2\lim_{x \to 0} \frac{\sin x^2}{1-\cos x} = \lim_{x \to 0} \frac{x^2}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{x^2}{\frac{x^2}{2}} = 2limx→01−cosxsinx2=limx→02x2x2=limx→02x2x2=2あるいは、limx→0sinx21−cosx=limx→0sinx2x2⋅x21−cosx=limx→0sinx2x2⋅limx→0x21−cosx=1⋅limx→0x22sin2x2\lim_{x \to 0} \frac{\sin x^2}{1-\cos x} = \lim_{x \to 0} \frac{\sin x^2}{x^2} \cdot \frac{x^2}{1-\cos x} = \lim_{x \to 0} \frac{\sin x^2}{x^2} \cdot \lim_{x \to 0} \frac{x^2}{1-\cos x} = 1 \cdot \lim_{x \to 0} \frac{x^2}{2 \sin^2 \frac{x}{2}}limx→01−cosxsinx2=limx→0x2sinx2⋅1−cosxx2=limx→0x2sinx2⋅limx→01−cosxx2=1⋅limx→02sin22xx2=12limx→0x2sin2x2=12limx→0(xsinx2)2=12limx→0(x2sinx2⋅2)2= \frac{1}{2} \lim_{x \to 0} \frac{x^2}{\sin^2 \frac{x}{2}} = \frac{1}{2} \lim_{x \to 0} \left( \frac{x}{\sin \frac{x}{2}} \right)^2 = \frac{1}{2} \lim_{x \to 0} \left( \frac{\frac{x}{2}}{\sin \frac{x}{2}} \cdot 2 \right)^2=21limx→0sin22xx2=21limx→0(sin2xx)2=21limx→0(sin2x2x⋅2)2=12(limx→0x2sinx2⋅limx→02)2=12(1⋅2)2=12⋅4=2= \frac{1}{2} \left( \lim_{x \to 0} \frac{\frac{x}{2}}{\sin \frac{x}{2}} \cdot \lim_{x \to 0} 2 \right)^2 = \frac{1}{2} (1 \cdot 2)^2 = \frac{1}{2} \cdot 4 = 2=21(limx→0sin2x2x⋅limx→02)2=21(1⋅2)2=21⋅4=23. 最終的な答え(1) 92\frac{9}{2}29(2) 2