次の式を計算せよ: $\frac{\frac{16}{3}}{48} \div (4a^23b)^3$代数学分数指数式の計算代数2025/5/151. 問題の内容次の式を計算せよ:16348÷(4a23b)3\frac{\frac{16}{3}}{48} \div (4a^23b)^348316÷(4a23b)32. 解き方の手順まず、分数の割り算を計算します。16348=163÷48=163×148=163×48=16144=19\frac{\frac{16}{3}}{48} = \frac{16}{3} \div 48 = \frac{16}{3} \times \frac{1}{48} = \frac{16}{3 \times 48} = \frac{16}{144} = \frac{1}{9}48316=316÷48=316×481=3×4816=14416=91次に、(4a23b)3(4a^23b)^3(4a23b)3 を計算します。(4a23b)3=(4×3×a2×b)3=(12a2b)3=123(a2)3b3=1728a6b3(4a^23b)^3 = (4 \times 3 \times a^2 \times b)^3 = (12a^2b)^3 = 12^3 (a^2)^3 b^3 = 1728a^6b^3(4a23b)3=(4×3×a2×b)3=(12a2b)3=123(a2)3b3=1728a6b3最後に、19\frac{1}{9}91 を 1728a6b31728a^6b^31728a6b3 で割ります。19÷(1728a6b3)=19×11728a6b3=19×1728a6b3=115552a6b3\frac{1}{9} \div (1728a^6b^3) = \frac{1}{9} \times \frac{1}{1728a^6b^3} = \frac{1}{9 \times 1728 a^6b^3} = \frac{1}{15552a^6b^3}91÷(1728a6b3)=91×1728a6b31=9×1728a6b31=15552a6b313. 最終的な答え115552a6b3\frac{1}{15552a^6b^3}15552a6b31