関数 $-f(x) = e^{\frac{t}{2}} \cdot \sin(2t)$ を積分せよ。つまり、$\int e^{\frac{t}{2}} \sin(2t) dt$ を求めよ。解析学積分部分積分指数関数三角関数2025/5/161. 問題の内容関数 −f(x)=et2⋅sin(2t)-f(x) = e^{\frac{t}{2}} \cdot \sin(2t)−f(x)=e2t⋅sin(2t) を積分せよ。つまり、∫et2sin(2t)dt\int e^{\frac{t}{2}} \sin(2t) dt∫e2tsin(2t)dt を求めよ。2. 解き方の手順部分積分を2回用いる。I=∫et2sin(2t)dtI = \int e^{\frac{t}{2}} \sin(2t) dtI=∫e2tsin(2t)dt とする。u=sin(2t)u = \sin(2t)u=sin(2t), dv=et2dtdv = e^{\frac{t}{2}} dtdv=e2tdt とすると、du=2cos(2t)dtdu = 2\cos(2t) dtdu=2cos(2t)dt, v=2et2v = 2e^{\frac{t}{2}}v=2e2t となる。よって、I=2et2sin(2t)−∫2et2⋅2cos(2t)dt=2et2sin(2t)−4∫et2cos(2t)dtI = 2e^{\frac{t}{2}} \sin(2t) - \int 2e^{\frac{t}{2}} \cdot 2\cos(2t) dt = 2e^{\frac{t}{2}} \sin(2t) - 4 \int e^{\frac{t}{2}} \cos(2t) dtI=2e2tsin(2t)−∫2e2t⋅2cos(2t)dt=2e2tsin(2t)−4∫e2tcos(2t)dt次に、∫et2cos(2t)dt\int e^{\frac{t}{2}} \cos(2t) dt∫e2tcos(2t)dt を部分積分で求める。u=cos(2t)u = \cos(2t)u=cos(2t), dv=et2dtdv = e^{\frac{t}{2}} dtdv=e2tdt とすると、du=−2sin(2t)dtdu = -2\sin(2t) dtdu=−2sin(2t)dt, v=2et2v = 2e^{\frac{t}{2}}v=2e2t となる。よって、∫et2cos(2t)dt=2et2cos(2t)−∫2et2(−2sin(2t))dt=2et2cos(2t)+4∫et2sin(2t)dt\int e^{\frac{t}{2}} \cos(2t) dt = 2e^{\frac{t}{2}} \cos(2t) - \int 2e^{\frac{t}{2}} (-2\sin(2t)) dt = 2e^{\frac{t}{2}} \cos(2t) + 4 \int e^{\frac{t}{2}} \sin(2t) dt∫e2tcos(2t)dt=2e2tcos(2t)−∫2e2t(−2sin(2t))dt=2e2tcos(2t)+4∫e2tsin(2t)dtこれを III の式に代入する。I=2et2sin(2t)−4(2et2cos(2t)+4∫et2sin(2t)dt)=2et2sin(2t)−8et2cos(2t)−16II = 2e^{\frac{t}{2}} \sin(2t) - 4(2e^{\frac{t}{2}} \cos(2t) + 4 \int e^{\frac{t}{2}} \sin(2t) dt) = 2e^{\frac{t}{2}} \sin(2t) - 8e^{\frac{t}{2}} \cos(2t) - 16 II=2e2tsin(2t)−4(2e2tcos(2t)+4∫e2tsin(2t)dt)=2e2tsin(2t)−8e2tcos(2t)−16I17I=2et2sin(2t)−8et2cos(2t)17I = 2e^{\frac{t}{2}} \sin(2t) - 8e^{\frac{t}{2}} \cos(2t)17I=2e2tsin(2t)−8e2tcos(2t)I=2et2sin(2t)−8et2cos(2t)17+CI = \frac{2e^{\frac{t}{2}} \sin(2t) - 8e^{\frac{t}{2}} \cos(2t)}{17} + CI=172e2tsin(2t)−8e2tcos(2t)+C3. 最終的な答え∫et2sin(2t)dt=2et2sin(2t)−8et2cos(2t)17+C\int e^{\frac{t}{2}} \sin(2t) dt = \frac{2e^{\frac{t}{2}} \sin(2t) - 8e^{\frac{t}{2}} \cos(2t)}{17} + C∫e2tsin(2t)dt=172e2tsin(2t)−8e2tcos(2t)+C