## 1. 問題の内容代数学式の計算有理化根号二次式の展開2025/5/18##1. 問題の内容x=13+1x = \frac{1}{\sqrt{3} + 1}x=3+11, y=13−1y = \frac{1}{\sqrt{3} - 1}y=3−11 のとき、以下の式の値を求めよ。(1) x+yx+yx+y(2) xyxyxy(3) x2+y2x^2+y^2x2+y2##2. 解き方の手順(1) x+yx+yx+y の計算xxx と yyy の分母を有理化します。x=13+1=3−1(3+1)(3−1)=3−13−1=3−12x = \frac{1}{\sqrt{3} + 1} = \frac{\sqrt{3} - 1}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{\sqrt{3} - 1}{3 - 1} = \frac{\sqrt{3} - 1}{2}x=3+11=(3+1)(3−1)3−1=3−13−1=23−1y=13−1=3+1(3−1)(3+1)=3+13−1=3+12y = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{\sqrt{3} + 1}{3 - 1} = \frac{\sqrt{3} + 1}{2}y=3−11=(3−1)(3+1)3+1=3−13+1=23+1x+y=3−12+3+12=3−1+3+12=232=3x+y = \frac{\sqrt{3} - 1}{2} + \frac{\sqrt{3} + 1}{2} = \frac{\sqrt{3} - 1 + \sqrt{3} + 1}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3}x+y=23−1+23+1=23−1+3+1=223=3(2) xyxyxy の計算xy=13+1⋅13−1=1(3+1)(3−1)=13−1=12xy = \frac{1}{\sqrt{3} + 1} \cdot \frac{1}{\sqrt{3} - 1} = \frac{1}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{1}{3 - 1} = \frac{1}{2}xy=3+11⋅3−11=(3+1)(3−1)1=3−11=21(3) x2+y2x^2+y^2x2+y2 の計算(x+y)2=x2+2xy+y2(x+y)^2 = x^2 + 2xy + y^2(x+y)2=x2+2xy+y2 より、x2+y2=(x+y)2−2xyx^2+y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xy(1) と (2) の結果を利用して、x+y=3x+y = \sqrt{3}x+y=3、xy=12xy = \frac{1}{2}xy=21 であるから、x2+y2=(3)2−2⋅12=3−1=2x^2 + y^2 = (\sqrt{3})^2 - 2 \cdot \frac{1}{2} = 3 - 1 = 2x2+y2=(3)2−2⋅21=3−1=2##3. 最終的な答え(1) x+y=3x+y = \sqrt{3}x+y=3(2) xy=12xy = \frac{1}{2}xy=21(3) x2+y2=2x^2+y^2 = 2x2+y2=2