通常サイズのスライスチーズと大きいサイズのスライスチーズが売られている。どちらも正方形で、大きいサイズのスライスチーズの面積は通常サイズの面積の1.2倍である。通常サイズの1辺の長さが8.5cmのとき、大きいサイズの1辺の長さを小数第3位を四捨五入して求める。

算数面積平方根四捨五入
2025/5/18

1. 問題の内容

通常サイズのスライスチーズと大きいサイズのスライスチーズが売られている。どちらも正方形で、大きいサイズのスライスチーズの面積は通常サイズの面積の1.2倍である。通常サイズの1辺の長さが8.5cmのとき、大きいサイズの1辺の長さを小数第3位を四捨五入して求める。

2. 解き方の手順

通常サイズの面積を計算する。
大きいサイズの面積を計算する。
大きいサイズの1辺の長さを計算する。
小数第3位を四捨五入する。
通常サイズの面積は、8.5×8.5=72.25 cm28.5 \times 8.5 = 72.25 \text{ cm}^2
大きいサイズの面積は、72.25×1.2=86.7 cm272.25 \times 1.2 = 86.7 \text{ cm}^2
大きいサイズの1辺の長さは、86.79.311283 cm\sqrt{86.7} \approx 9.311283 \text{ cm}
小数第3位を四捨五入すると、9.31 cm9.31 \text{ cm}

3. 最終的な答え

9.31 cm

「算数」の関連問題

1から1000までの整数について、以下の条件を満たす数がそれぞれ何個あるかを求める問題です。 (1) 3の倍数 (2) 5の倍数 (3) 3の倍数かつ5の倍数 (4) 3の倍数または5の倍数 (5) ...

倍数約数包除原理
2025/5/18

$\frac{2}{3}n$ と $(\frac{2}{3})^4$ の値が何か違うということが書かれています。この問題では、$(\frac{2}{3})^4$ を計算し、$\frac{2}{3}n$...

分数計算方程式
2025/5/18

1から100までの整数の中で、以下の条件を満たす整数の個数をそれぞれ求める問題です。 (1) 4で割り切れる数 (2) 6で割り切れない数 (3) 4と6の少なくとも一方で割り切れる数 (4) 4でも...

整数の性質約数倍数集合
2025/5/18

問題は「4でも6でも割り切れない数」についてです。しかし、問題文だけでは、どの範囲の数について考えているのかが不明です。ここでは、具体的な数の範囲が指定されていないため、**「4でも6でも割り切れない...

約数倍数公倍数最小公倍数包除原理
2025/5/18

AからBへ行くのに4種類のバス路線がある。AからBまで行って帰ってくる場合において、往復で同じ路線を利用してよいとき、往復に利用する路線の選び方は何通りあるか。

場合の数組み合わせ積の法則
2025/5/18

バス停AからBへ行くのに4種類のバス路線があります。AからBまで行って帰ってくる場合、往復に利用する路線の選び方が何通りあるかを求めます。ただし、往復で同じ路線を利用してもよいとします。

場合の数組み合わせ積の法則
2025/5/18

バス停AからBへ行くのに4種類のバス路線がある。AからBまで行って帰ってくる場合、以下の条件を満たす時、往復に利用する路線の選び方は何通りあるか。 (1) 往復で同じ路線を利用してよい。

組み合わせ場合の数数え上げ
2025/5/18

6個の数字 1, 2, 3, 4, 5, 6 から異なる4個の数字を使って4桁の整数を作るとき、以下の条件を満たす整数は何個あるか。 (1) 4300より大きい整数 (2) 5000より大きい偶数

順列組み合わせ整数条件を満たす数
2025/5/18

5つの数字 0, 1, 2, 3, 4 を使ってできる3桁の整数のうち、以下の条件を満たす整数の個数を求めます。ただし、同じ数字は2度以上使わないものとします。 (1) 偶数 (2) 3の倍数

場合の数整数の性質偶数3の倍数順列
2025/5/18

6個の数字0, 1, 2, 3, 4, 5を使って、以下の条件を満たす整数が何個できるかを求めます。ただし、同じ数字は2度以上使わないとします。 (1) 6桁の整数 (2) 6桁の整数で5の倍数

順列組み合わせ整数の性質倍数
2025/5/18