次の極限値を求めよ。 $\lim_{x \to 0} (2x+5)$

解析学極限関数の極限
2025/5/18

1. 問題の内容

次の極限値を求めよ。
limx0(2x+5)\lim_{x \to 0} (2x+5)

2. 解き方の手順

xx00 に近づくときの 2x+52x+5 の極限を求める。
x=0x=02x+52x+5 に代入する。
2(0)+5=0+5=52(0) + 5 = 0 + 5 = 5

3. 最終的な答え

5

「解析学」の関連問題

次の関数の導関数を求める問題です。 (1) $y = x^4 \log x$ (2) $y = \log(e^x + e^{-x})$ (3) $y = xe^{3x}$ (4) $y = 2^x +...

微分導関数積の微分法合成関数の微分法指数関数対数関数
2025/6/5

与えられた関数の導関数を求める問題です。具体的には、以下の2つの関数について導関数を求めます。 (3) $y = (1 + x^2) \tan^{-1} x$ (4) $y = \sin^{-1} x...

導関数微分三角関数逆三角関数
2025/6/5

与えられた関数 $y = (1 + x^2)\arctan(x)$ の導関数を求める問題です。

微分導関数積の微分逆正接関数
2025/6/5

与えられた関数の導関数を求める問題です。問題には4つの関数が含まれています。 (1) $y = \sin(2x+3)$ (2) $y = \cos^2 x$ (3) $y = \cot 3x$ (4)...

微分導関数合成関数の微分商の微分
2025/6/5

$\lim_{x \to \infty} \left(1 + \frac{2}{x+1}\right)^x$ を計算する問題です。

極限ロピタルの定理指数関数自然対数
2025/6/5

関数 $y = a^x \log a$ の微分を求める問題です。

微分指数関数対数関数微分法
2025/6/5

与えられた極限を求めます。 $\lim_{x \to 1} \frac{\log x}{x-1}$

極限ロピタルの定理対数関数微分
2025/6/5

与えられた関数 $y = \frac{1}{1+x^2}$ の導関数 $y'$ を求める問題です。

導関数微分商の微分公式
2025/6/5

問題は、$y = a^x$ の指数関数についてである。しかし、写真が不鮮明であるため、正確な問題を特定するのは難しい。与えられた式から、指数関数$y = a^x$ の性質やグラフに関する質問の可能性が...

指数関数微分対数
2025/6/5

$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n})$ を計算する問題です。

極限数列ルート有理化
2025/6/5