9個の文字 E, X, C, E, L, L, E, N, T が与えられている。 (1) これらの文字を左から横一列に並べる場合の数を求める。また、Lが続いて並ばない並べ方の総数と、Eが続けて並ばない並べ方の総数を求める。 (2) これらの文字から任意に4文字を選んで左から横一列に並べる場合の数を求める。
2025/5/19
1. 問題の内容
9個の文字 E, X, C, E, L, L, E, N, T が与えられている。
(1) これらの文字を左から横一列に並べる場合の数を求める。また、Lが続いて並ばない並べ方の総数と、Eが続けて並ばない並べ方の総数を求める。
(2) これらの文字から任意に4文字を選んで左から横一列に並べる場合の数を求める。
2. 解き方の手順
(1)
(ア) 9文字を並べる総数:
9文字のうち、Eが3個、Lが2個あるので、総数は
(イ) Lが続いて並ばない並べ方の総数:
まずL以外の7文字(E, X, C, E, E, N, T)を並べる。これは 通り。
次に、並べた7文字の間にLを挿入する。Lを挿入できる場所は8箇所ある。この8箇所から2箇所を選ぶので、 通り。
したがって、Lが続いて並ばない並べ方の総数は 通り。
(ウ) Eが続けて並ばない並べ方の総数:
まずL, X, C, L, N, Tの6文字を並べると 通り。
この6文字の間にEを挿入する場所は7箇所ある。3個のEを異なる場所に入れるので通り。
よってEが続けて並ばない並べ方の総数は通り。
(2)
4文字を取り出して並べる場合の数。
文字の種類は E, X, C, L, N, Tの6種類。Eが3個、Lが2個。
(i) 4文字すべてが異なる場合。6種類から4文字を選ぶ。
(ii) 同じ文字が2つ含まれる場合。
同じ文字は E または L。
(a) Eを2つ含む場合:残りの2文字は5種類から選ぶ。 。
(b) Lを2つ含む場合:残りの2文字は5種類から選ぶ。。
(iii) 同じ文字が3つ含まれる場合。Eを3つ含む。残りの1文字は5種類から選ぶ。
(iv) 同じ文字が2種類、それぞれ2つずつ含まれる場合。Eを2つ、Lを2つ含む。
よって合計は通り。
3. 最終的な答え
ア: 30240
イ: 23520
ウ: 12600
エ: 866