与えられた4つの式をそれぞれ簡単にせよ。 (1) $\sqrt{12} - \sqrt{27} + 4\sqrt{3}$ (2) $\sqrt{5}\sqrt{30} + 2\sqrt{24} - 3\sqrt{54}$ (3) $(2\sqrt{3} - \sqrt{2})(\sqrt{3} + 3\sqrt{2})$ (4) $(1 + 2\sqrt{5})^2 - (1 - 2\sqrt{5})^2$

代数学根号式の計算平方根
2025/5/19

1. 問題の内容

与えられた4つの式をそれぞれ簡単にせよ。
(1) 1227+43\sqrt{12} - \sqrt{27} + 4\sqrt{3}
(2) 530+224354\sqrt{5}\sqrt{30} + 2\sqrt{24} - 3\sqrt{54}
(3) (232)(3+32)(2\sqrt{3} - \sqrt{2})(\sqrt{3} + 3\sqrt{2})
(4) (1+25)2(125)2(1 + 2\sqrt{5})^2 - (1 - 2\sqrt{5})^2

2. 解き方の手順

(1)
12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
27=9×3=33\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}
したがって、
1227+43=2333+43=(23+4)3=33\sqrt{12} - \sqrt{27} + 4\sqrt{3} = 2\sqrt{3} - 3\sqrt{3} + 4\sqrt{3} = (2 - 3 + 4)\sqrt{3} = 3\sqrt{3}
(2)
530=5×30=150=25×6=56\sqrt{5}\sqrt{30} = \sqrt{5 \times 30} = \sqrt{150} = \sqrt{25 \times 6} = 5\sqrt{6}
224=24×6=2×26=462\sqrt{24} = 2\sqrt{4 \times 6} = 2 \times 2\sqrt{6} = 4\sqrt{6}
354=39×6=3×36=963\sqrt{54} = 3\sqrt{9 \times 6} = 3 \times 3\sqrt{6} = 9\sqrt{6}
したがって、
530+224354=56+4696=(5+49)6=06=0\sqrt{5}\sqrt{30} + 2\sqrt{24} - 3\sqrt{54} = 5\sqrt{6} + 4\sqrt{6} - 9\sqrt{6} = (5 + 4 - 9)\sqrt{6} = 0\sqrt{6} = 0
(3)
(232)(3+32)=23×3+23×322×32×32(2\sqrt{3} - \sqrt{2})(\sqrt{3} + 3\sqrt{2}) = 2\sqrt{3} \times \sqrt{3} + 2\sqrt{3} \times 3\sqrt{2} - \sqrt{2} \times \sqrt{3} - \sqrt{2} \times 3\sqrt{2}
=2×3+6663×2=6+6666=56= 2 \times 3 + 6\sqrt{6} - \sqrt{6} - 3 \times 2 = 6 + 6\sqrt{6} - \sqrt{6} - 6 = 5\sqrt{6}
(4)
(1+25)2=12+2×1×25+(25)2=1+45+4×5=1+45+20=21+45(1 + 2\sqrt{5})^2 = 1^2 + 2 \times 1 \times 2\sqrt{5} + (2\sqrt{5})^2 = 1 + 4\sqrt{5} + 4 \times 5 = 1 + 4\sqrt{5} + 20 = 21 + 4\sqrt{5}
(125)2=122×1×25+(25)2=145+4×5=145+20=2145(1 - 2\sqrt{5})^2 = 1^2 - 2 \times 1 \times 2\sqrt{5} + (2\sqrt{5})^2 = 1 - 4\sqrt{5} + 4 \times 5 = 1 - 4\sqrt{5} + 20 = 21 - 4\sqrt{5}
したがって、
(1+25)2(125)2=(21+45)(2145)=21+4521+45=85(1 + 2\sqrt{5})^2 - (1 - 2\sqrt{5})^2 = (21 + 4\sqrt{5}) - (21 - 4\sqrt{5}) = 21 + 4\sqrt{5} - 21 + 4\sqrt{5} = 8\sqrt{5}

3. 最終的な答え

(1) 333\sqrt{3}
(2) 00
(3) 565\sqrt{6}
(4) 858\sqrt{5}