与えられた数式の総和を求める問題です。 $\sum_{k=1}^{n+1} (4k^3 - 1)$代数学シグマ数列総和多項式2025/5/191. 問題の内容与えられた数式の総和を求める問題です。∑k=1n+1(4k3−1)\sum_{k=1}^{n+1} (4k^3 - 1)∑k=1n+1(4k3−1)2. 解き方の手順まず、総和の性質を利用して、式を分解します。∑k=1n+1(4k3−1)=∑k=1n+14k3−∑k=1n+11\sum_{k=1}^{n+1} (4k^3 - 1) = \sum_{k=1}^{n+1} 4k^3 - \sum_{k=1}^{n+1} 1∑k=1n+1(4k3−1)=∑k=1n+14k3−∑k=1n+11次に、総和の公式を利用します。∑k=1nk3=(n(n+1)2)2\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2∑k=1nk3=(2n(n+1))2∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=n上記の公式を利用すると、∑k=1n+14k3=4∑k=1n+1k3=4((n+1)(n+2)2)2=4⋅(n+1)2(n+2)24=(n+1)2(n+2)2\sum_{k=1}^{n+1} 4k^3 = 4 \sum_{k=1}^{n+1} k^3 = 4 \left(\frac{(n+1)(n+2)}{2}\right)^2 = 4 \cdot \frac{(n+1)^2(n+2)^2}{4} = (n+1)^2 (n+2)^2∑k=1n+14k3=4∑k=1n+1k3=4(2(n+1)(n+2))2=4⋅4(n+1)2(n+2)2=(n+1)2(n+2)2∑k=1n+11=n+1\sum_{k=1}^{n+1} 1 = n+1∑k=1n+11=n+1したがって、∑k=1n+1(4k3−1)=(n+1)2(n+2)2−(n+1)=(n+1)[(n+1)(n+2)2−1]=(n+1)[(n+1)(n2+4n+4)−1]=(n+1)[n3+4n2+4n+n2+4n+4−1]=(n+1)[n3+5n2+8n+3]\sum_{k=1}^{n+1} (4k^3 - 1) = (n+1)^2 (n+2)^2 - (n+1) = (n+1) [(n+1)(n+2)^2 - 1] = (n+1)[(n+1)(n^2 + 4n + 4) - 1] = (n+1)[n^3 + 4n^2 + 4n + n^2 + 4n + 4 - 1] = (n+1)[n^3 + 5n^2 + 8n + 3]∑k=1n+1(4k3−1)=(n+1)2(n+2)2−(n+1)=(n+1)[(n+1)(n+2)2−1]=(n+1)[(n+1)(n2+4n+4)−1]=(n+1)[n3+4n2+4n+n2+4n+4−1]=(n+1)[n3+5n2+8n+3]=n4+5n3+8n2+3n+n3+5n2+8n+3=n4+6n3+13n2+11n+3 = n^4 + 5n^3 + 8n^2 + 3n + n^3 + 5n^2 + 8n + 3 = n^4 + 6n^3 + 13n^2 + 11n + 3=n4+5n3+8n2+3n+n3+5n2+8n+3=n4+6n3+13n2+11n+33. 最終的な答えn4+6n3+13n2+11n+3n^4 + 6n^3 + 13n^2 + 11n + 3n4+6n3+13n2+11n+3