$x = \frac{1}{\sqrt{5} + \sqrt{3}}$、 $y = \frac{1}{\sqrt{5} - \sqrt{3}}$のとき、$x+y$, $xy$, $x^2 + y^2$, $x^3y + xy^3$の値を求める問題です。代数学式の計算有理化平方根代入2025/5/191. 問題の内容x=15+3x = \frac{1}{\sqrt{5} + \sqrt{3}}x=5+31、 y=15−3y = \frac{1}{\sqrt{5} - \sqrt{3}}y=5−31のとき、x+yx+yx+y, xyxyxy, x2+y2x^2 + y^2x2+y2, x3y+xy3x^3y + xy^3x3y+xy3の値を求める問題です。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=15+3=5−3(5+3)(5−3)=5−35−3=5−32x = \frac{1}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} = \frac{\sqrt{5} - \sqrt{3}}{5 - 3} = \frac{\sqrt{5} - \sqrt{3}}{2}x=5+31=(5+3)(5−3)5−3=5−35−3=25−3y=15−3=5+3(5−3)(5+3)=5+35−3=5+32y = \frac{1}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} + \sqrt{3}}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} = \frac{\sqrt{5} + \sqrt{3}}{5 - 3} = \frac{\sqrt{5} + \sqrt{3}}{2}y=5−31=(5−3)(5+3)5+3=5−35+3=25+3次に、x+yx+yx+yを計算します。x+y=5−32+5+32=5−3+5+32=252=5x + y = \frac{\sqrt{5} - \sqrt{3}}{2} + \frac{\sqrt{5} + \sqrt{3}}{2} = \frac{\sqrt{5} - \sqrt{3} + \sqrt{5} + \sqrt{3}}{2} = \frac{2\sqrt{5}}{2} = \sqrt{5}x+y=25−3+25+3=25−3+5+3=225=5次に、xyxyxyを計算します。xy=15+3⋅15−3=1(5+3)(5−3)=15−3=12xy = \frac{1}{\sqrt{5} + \sqrt{3}} \cdot \frac{1}{\sqrt{5} - \sqrt{3}} = \frac{1}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} = \frac{1}{5 - 3} = \frac{1}{2}xy=5+31⋅5−31=(5+3)(5−3)1=5−31=21次に、x2+y2x^2 + y^2x2+y2を計算します。x2+y2=(x+y)2−2xy=(5)2−2⋅12=5−1=4x^2 + y^2 = (x+y)^2 - 2xy = (\sqrt{5})^2 - 2 \cdot \frac{1}{2} = 5 - 1 = 4x2+y2=(x+y)2−2xy=(5)2−2⋅21=5−1=4次に、x3y+xy3x^3y + xy^3x3y+xy3を計算します。x3y+xy3=xy(x2+y2)=12⋅4=2x^3y + xy^3 = xy(x^2 + y^2) = \frac{1}{2} \cdot 4 = 2x3y+xy3=xy(x2+y2)=21⋅4=23. 最終的な答えx+y=5x+y = \sqrt{5}x+y=5xy=12xy = \frac{1}{2}xy=21x2+y2=4x^2 + y^2 = 4x2+y2=4x3y+xy3=2x^3y + xy^3 = 2x3y+xy3=2