2次方程式 $x^2 - 4x - 2 = 0$ の2つの解を $\alpha, \beta$ とするとき、以下の式の値を求める。 (1) $\alpha^2 \beta + \alpha \beta^2$ (2) $(\alpha+1)(\beta+1)$ (3) $\alpha^2 + \beta^2$ (4) $(\alpha-\beta)^2$ (5) $\alpha^3 + \beta^3$ (6) $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$

代数学二次方程式解と係数の関係式の計算
2025/5/19

1. 問題の内容

2次方程式 x24x2=0x^2 - 4x - 2 = 0 の2つの解を α,β\alpha, \beta とするとき、以下の式の値を求める。
(1) α2β+αβ2\alpha^2 \beta + \alpha \beta^2
(2) (α+1)(β+1)(\alpha+1)(\beta+1)
(3) α2+β2\alpha^2 + \beta^2
(4) (αβ)2(\alpha-\beta)^2
(5) α3+β3\alpha^3 + \beta^3
(6) βα+αβ\frac{\beta}{\alpha} + \frac{\alpha}{\beta}

2. 解き方の手順

解と係数の関係より、
α+β=4\alpha + \beta = 4
αβ=2\alpha \beta = -2
(1) α2β+αβ2=αβ(α+β)=(2)(4)=8\alpha^2 \beta + \alpha \beta^2 = \alpha \beta (\alpha + \beta) = (-2)(4) = -8
(2) (α+1)(β+1)=αβ+α+β+1=2+4+1=3(\alpha+1)(\beta+1) = \alpha \beta + \alpha + \beta + 1 = -2 + 4 + 1 = 3
(3) α2+β2=(α+β)22αβ=(4)22(2)=16+4=20\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta = (4)^2 - 2(-2) = 16 + 4 = 20
(4) (αβ)2=(α+β)24αβ=(4)24(2)=16+8=24(\alpha-\beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta = (4)^2 - 4(-2) = 16 + 8 = 24
(5) α3+β3=(α+β)(α2αβ+β2)=(α+β)((α+β)23αβ)=(4)((4)23(2))=4(16+6)=4(22)=88\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha \beta + \beta^2) = (\alpha + \beta)((\alpha+\beta)^2 - 3\alpha\beta) = (4)((4)^2 - 3(-2)) = 4(16 + 6) = 4(22) = 88
(6) βα+αβ=α2+β2αβ=(α+β)22αβαβ=(4)22(2)2=16+42=202=10\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2 \alpha \beta}{\alpha \beta} = \frac{(4)^2 - 2(-2)}{-2} = \frac{16+4}{-2} = \frac{20}{-2} = -10

3. 最終的な答え

(1) -8
(2) 3
(3) 20
(4) 24
(5) 88
(6) -10