$\sin 120^\circ$ の値を求めよ。

幾何学三角関数角度sin三角比
2025/5/19

1. 問題の内容

sin120\sin 120^\circ の値を求めよ。

2. 解き方の手順

120°は第2象限の角である。120°の動径とx軸のなす角は180° - 120° = 60°である。
sin120\sin 120^\circ は、sin(18060)\sin (180^\circ - 60^\circ) と書き換えることができる。
sin(180θ)=sinθ\sin (180^\circ - \theta) = \sin \theta の公式を用いると、
sin(18060)=sin60\sin (180^\circ - 60^\circ) = \sin 60^\circ となる。
sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2} である。

3. 最終的な答え

32\frac{\sqrt{3}}{2}

「幾何学」の関連問題

図のような道の面積 $S$ と、道の真ん中を通る線の長さ $l$ をそれぞれ求め、 $S = al$ が成り立つことを示す問題です。ここで、$a$ は道の幅、$h$ は長方形部分の道の長さ、$2h$は...

面積図形長方形道の面積
2025/5/19

三角形ABCにおいて、辺ACの長さが$3\sqrt{3}$、角Aが30°、角Bが60°のとき、この三角形の外接円の半径を求める問題です。

三角形外接円正弦定理三角比
2025/5/19

図4において、辺ACの長さが$3\sqrt{3}$、角Aが$30^\circ$、角Bが$60^\circ$である三角形ABCがある。このとき、辺BCの長さを求める。

三角形三角比直角三角形辺の長さ
2025/5/19

三角形ABCにおいて、$\sin A : \sin B : \sin C = 4 : 5 : 6$ のとき、3辺の長さ $a : b : c$ は次のうちどれか。選択肢は $6:5:4$, $4:5:...

正弦定理三角形辺の比三角比
2025/5/19

三角形ABCにおいて、面積が$15\sqrt{3}$、$\angle A = 60^\circ$、AB=6のとき、ACの長さを求める問題です。

三角形面積三角比正弦
2025/5/19

図の三角形の面積を表す式として適切なものを、選択肢の中から選びます。角Aが与えられており、三角形の辺の長さ $a, b, c$ が示されています。

三角形面積三角比正弦
2025/5/19

図3において、線分BHの長さを表す式を、選択肢の中から選びなさい。選択肢は、$c \sin A$, $c \cos A$, $c \tan A$ の3つです。ここで、$c$ は線分ABの長さを表し、$...

三角比直角三角形正弦図形
2025/5/19

$\cos(90^\circ - A)$ と等しいものを選択肢の中から選ぶ問題です。選択肢は、$\sin A$, $\cos A$, $\tan A$ です。

三角関数余角の公式三角比
2025/5/19

$\cos A = \frac{12}{13}$ のとき、$\sin A$ と $\tan A$ の値の組み合わせとして正しいものを選択する問題です。ただし、$A$は鋭角です。

三角比三角関数sincostan鋭角
2025/5/19

画像に示された三角形の面積を求める問題です。角Aとその対辺$a$, そして辺$b$, $c$が与えられています。選択肢の中から正しい三角形の面積の公式を選ぶ必要があります。

三角形面積三角関数公式
2025/5/19