$x = \frac{3-\sqrt{5}}{2}$ のとき、① $x^3 - 2x^2$ と ② $x^4 - 3x^3$ の値を求めよ。代数学式の計算因数分解無理数代入2025/5/241. 問題の内容x=3−52x = \frac{3-\sqrt{5}}{2}x=23−5 のとき、① x3−2x2x^3 - 2x^2x3−2x2 と ② x4−3x3x^4 - 3x^3x4−3x3 の値を求めよ。2. 解き方の手順まず、x=3−52x = \frac{3 - \sqrt{5}}{2}x=23−5を変形する。2x=3−52x = 3 - \sqrt{5}2x=3−55=3−2x\sqrt{5} = 3 - 2x5=3−2x両辺を2乗すると5=(3−2x)25 = (3 - 2x)^25=(3−2x)25=9−12x+4x25 = 9 - 12x + 4x^25=9−12x+4x24x2−12x+4=04x^2 - 12x + 4 = 04x2−12x+4=0x2−3x+1=0x^2 - 3x + 1 = 0x2−3x+1=0① x3−2x2x^3 - 2x^2x3−2x2 の値を求める。x2=3x−1x^2 = 3x - 1x2=3x−1x3=x⋅x2=x(3x−1)=3x2−x=3(3x−1)−x=9x−3−x=8x−3x^3 = x \cdot x^2 = x(3x - 1) = 3x^2 - x = 3(3x - 1) - x = 9x - 3 - x = 8x - 3x3=x⋅x2=x(3x−1)=3x2−x=3(3x−1)−x=9x−3−x=8x−3したがって、x3−2x2=(8x−3)−2(3x−1)=8x−3−6x+2=2x−1x^3 - 2x^2 = (8x - 3) - 2(3x - 1) = 8x - 3 - 6x + 2 = 2x - 1x3−2x2=(8x−3)−2(3x−1)=8x−3−6x+2=2x−1x=3−52x = \frac{3 - \sqrt{5}}{2}x=23−5を代入すると2x−1=2(3−52)−1=3−5−1=2−52x - 1 = 2(\frac{3 - \sqrt{5}}{2}) - 1 = 3 - \sqrt{5} - 1 = 2 - \sqrt{5}2x−1=2(23−5)−1=3−5−1=2−5② x4−3x3x^4 - 3x^3x4−3x3 の値を求める。x3=8x−3x^3 = 8x - 3x3=8x−3 (上記で求めた)x4=x⋅x3=x(8x−3)=8x2−3x=8(3x−1)−3x=24x−8−3x=21x−8x^4 = x \cdot x^3 = x(8x - 3) = 8x^2 - 3x = 8(3x - 1) - 3x = 24x - 8 - 3x = 21x - 8x4=x⋅x3=x(8x−3)=8x2−3x=8(3x−1)−3x=24x−8−3x=21x−8したがって、x4−3x3=(21x−8)−3(8x−3)=21x−8−24x+9=−3x+1x^4 - 3x^3 = (21x - 8) - 3(8x - 3) = 21x - 8 - 24x + 9 = -3x + 1x4−3x3=(21x−8)−3(8x−3)=21x−8−24x+9=−3x+1x=3−52x = \frac{3 - \sqrt{5}}{2}x=23−5を代入すると−3x+1=−3(3−52)+1=−9+352+22=−7+352-3x + 1 = -3(\frac{3 - \sqrt{5}}{2}) + 1 = \frac{-9 + 3\sqrt{5}}{2} + \frac{2}{2} = \frac{-7 + 3\sqrt{5}}{2}−3x+1=−3(23−5)+1=2−9+35+22=2−7+353. 最終的な答え① x3−2x2=2−5x^3 - 2x^2 = 2 - \sqrt{5}x3−2x2=2−5② x4−3x3=−7+352x^4 - 3x^3 = \frac{-7 + 3\sqrt{5}}{2}x4−3x3=2−7+35