与えられた式 $2x^2 - 5xy - 3y^2 - x + 10y - 3$ を因数分解します。代数学因数分解多項式2025/5/251. 問題の内容与えられた式 2x2−5xy−3y2−x+10y−32x^2 - 5xy - 3y^2 - x + 10y - 32x2−5xy−3y2−x+10y−3 を因数分解します。2. 解き方の手順まず、xxxについての二次式として整理します。2x2+(−5y−1)x+(−3y2+10y−3)2x^2 + (-5y - 1)x + (-3y^2 + 10y - 3)2x2+(−5y−1)x+(−3y2+10y−3)次に、定数項 −3y2+10y−3-3y^2 + 10y - 3−3y2+10y−3 を因数分解します。−3y2+10y−3=−(3y2−10y+3)=−(3y−1)(y−3)=(1−3y)(y−3)-3y^2 + 10y - 3 = -(3y^2 - 10y + 3) = -(3y - 1)(y - 3) = (1 - 3y)(y - 3)−3y2+10y−3=−(3y2−10y+3)=−(3y−1)(y−3)=(1−3y)(y−3)したがって、元の式は2x2+(−5y−1)x+(1−3y)(y−3)2x^2 + (-5y - 1)x + (1 - 3y)(y - 3)2x2+(−5y−1)x+(1−3y)(y−3)と表せます。この式を因数分解することを考えます。(2x+ay+b)(x+cy+d)=2x2+(a+2c)xy+acy2+(2d+b)x+(ad+bc)y+bd(2x + ay + b)(x + cy + d) = 2x^2 + (a+2c)xy + ac y^2 + (2d+b)x + (ad+bc)y + bd(2x+ay+b)(x+cy+d)=2x2+(a+2c)xy+acy2+(2d+b)x+(ad+bc)y+bdac=−3,bd=−3,a+2c=−5,2d+b=−1,ad+bc=10ac = -3, bd = -3, a+2c = -5, 2d+b = -1, ad+bc = 10ac=−3,bd=−3,a+2c=−5,2d+b=−1,ad+bc=10a=−1,c=3,b=3,d=−1a = -1, c = 3, b = 3, d = -1a=−1,c=3,b=3,d=−1を試すとac=−3,bd=−3,a+2c=−1+6=5ac = -3, bd = -3, a+2c = -1 + 6 = 5ac=−3,bd=−3,a+2c=−1+6=5 となるのでa=−3,c=1,b=1,d=−3a = -3, c = 1, b = 1, d = -3a=−3,c=1,b=1,d=−3を試すとac=−3,bd=−3,a+2c=−3+2=−1,2d+b=−6+1=−5,ad+bc=9+1=10ac = -3, bd = -3, a+2c = -3 + 2 = -1, 2d+b = -6+1 = -5, ad+bc = 9 + 1 = 10ac=−3,bd=−3,a+2c=−3+2=−1,2d+b=−6+1=−5,ad+bc=9+1=10よって、(2x−y+3)(x−3y−1)=2x2−6xy−2x−xy+3y2+y+3x−9y−3(2x - y + 3)(x - 3y - 1) = 2x^2 - 6xy - 2x - xy + 3y^2 + y + 3x - 9y - 3(2x−y+3)(x−3y−1)=2x2−6xy−2x−xy+3y2+y+3x−9y−3=2x2−7xy+x+3y2−8y−3= 2x^2 - 7xy + x + 3y^2 - 8y - 3=2x2−7xy+x+3y2−8y−3となりません。2x2+(−5y−1)x−(3y−1)(y−3)2x^2 + (-5y - 1)x - (3y - 1)(y - 3)2x2+(−5y−1)x−(3y−1)(y−3)なので(2x+ay+b)(x+cy+d)=2x2+(a+2c)xy+acy2+(2d+b)x+(ad+bc)y+bd(2x + ay + b)(x + cy + d) = 2x^2 + (a+2c)xy + ac y^2 + (2d+b)x + (ad+bc)y + bd(2x+ay+b)(x+cy+d)=2x2+(a+2c)xy+acy2+(2d+b)x+(ad+bc)y+bd2x2−5xy−3y2−x+10y−3=(2x+y+a)(x−3y+b)2x^2 - 5xy - 3y^2 - x + 10y - 3 = (2x + y + a)(x - 3y + b)2x2−5xy−3y2−x+10y−3=(2x+y+a)(x−3y+b)の形を仮定すると(2x+y+a)(x−3y+b)=2x2−6xy+2bx+xy−3y2+by+ax−3ay+ab=2x2−5xy−3y2+(2b+a)x+(b−3a)y+ab(2x+y+a)(x-3y+b) = 2x^2 - 6xy + 2bx + xy - 3y^2 + by + ax - 3ay + ab = 2x^2 -5xy - 3y^2 + (2b+a)x + (b-3a)y + ab(2x+y+a)(x−3y+b)=2x2−6xy+2bx+xy−3y2+by+ax−3ay+ab=2x2−5xy−3y2+(2b+a)x+(b−3a)y+ab2b+a=−1,b−3a=10,ab=−32b+a = -1, b-3a = 10, ab = -32b+a=−1,b−3a=10,ab=−32b+a=−12b+a = -12b+a=−1よりa=−1−2ba = -1-2ba=−1−2bなのでb−3(−1−2b)=10b-3(-1-2b) = 10b−3(−1−2b)=10b+3+6b=10b+3+6b = 10b+3+6b=107b=77b = 77b=7b=1b = 1b=1a=−1−2=−3a = -1-2 = -3a=−1−2=−3よって(2x+y−3)(x−3y+1)(2x+y-3)(x-3y+1)(2x+y−3)(x−3y+1)(2x+y−3)(x−3y+1)=2x2−6xy+2x+xy−3y2+y−3x+9y−3=2x2−5xy−3y2−x+10y−3(2x+y-3)(x-3y+1) = 2x^2 -6xy + 2x + xy - 3y^2 + y - 3x + 9y - 3 = 2x^2 - 5xy - 3y^2 -x + 10y - 3(2x+y−3)(x−3y+1)=2x2−6xy+2x+xy−3y2+y−3x+9y−3=2x2−5xy−3y2−x+10y−33. 最終的な答え(2x+y−3)(x−3y+1)(2x + y - 3)(x - 3y + 1)(2x+y−3)(x−3y+1)