導関数 $F'(x) = -6x^2 + 10x - 2$ と $F(-2) = 23$ が与えられたとき、関数 $F(x)$ を求めます。

解析学積分導関数不定積分積分定数関数の決定
2025/3/26

1. 問題の内容

導関数 F(x)=6x2+10x2F'(x) = -6x^2 + 10x - 2F(2)=23F(-2) = 23 が与えられたとき、関数 F(x)F(x) を求めます。

2. 解き方の手順

まず、F(x)F'(x) を積分して F(x)F(x) を求めます。
F(x)=F(x)dx=(6x2+10x2)dxF(x) = \int F'(x) dx = \int (-6x^2 + 10x - 2) dx
積分を実行します。
F(x)=6x2dx+10xdx2dxF(x) = -6\int x^2 dx + 10\int x dx - 2\int dx
F(x)=6(x33)+10(x22)2x+CF(x) = -6(\frac{x^3}{3}) + 10(\frac{x^2}{2}) - 2x + C
F(x)=2x3+5x22x+CF(x) = -2x^3 + 5x^2 - 2x + C
次に、F(2)=23F(-2) = 23 を用いて積分定数 CC を求めます。
F(2)=2(2)3+5(2)22(2)+C=23F(-2) = -2(-2)^3 + 5(-2)^2 - 2(-2) + C = 23
2(8)+5(4)+4+C=23-2(-8) + 5(4) + 4 + C = 23
16+20+4+C=2316 + 20 + 4 + C = 23
40+C=2340 + C = 23
C=2340=17C = 23 - 40 = -17
したがって、F(x)F(x)
F(x)=2x3+5x22x17F(x) = -2x^3 + 5x^2 - 2x - 17

3. 最終的な答え

F(x)=2x3+5x22x17F(x) = -2x^3 + 5x^2 - 2x - 17

「解析学」の関連問題

$0 \le \theta < 2\pi$ のとき、次の不等式を解く。 (1) $\sin \theta < -\frac{1}{\sqrt{2}}$ (2) $\cos \theta < \frac...

三角関数不等式三角不等式
2025/4/7

次の関数のグラフを描き、その周期を求めます。 (1) $y = \frac{3}{2} \sin \theta$ (2) $y = \frac{1}{2} \cos \theta$

三角関数グラフ周期
2025/4/7

$0 \le \theta < 2\pi$ のとき、次の方程式を解け。 (1) $\sin \theta = \frac{1}{\sqrt{2}}$ (2) $\cos \theta = \frac{...

三角関数三角方程式単位円
2025/4/7

与えられた角度 $\theta$ に対して、$\sin \theta$, $\cos \theta$, $\tan \theta$ の値を求める問題です。具体的には、以下の角度に対する三角関数の値を求...

三角関数三角関数の値単位円
2025/4/7

次の角度について、$\sin \theta$, $\cos \theta$, $\tan \theta$の値を求めよ。 (1) $\sin \frac{13}{4}\pi$ (2) $\cos \fr...

三角関数角度sincostanラジアン
2025/4/7

関数 $f(x) = \frac{1}{3}x^3 + ax^2 + (a+2)x + 1$ が極値を持つための実数 $a$ の条件を求める問題です。最終的な答えは $a < \boxed{\text...

極値微分判別式不等式
2025/4/7

## 1. 問題の内容

三角関数グラフsin関数関数のグラフ
2025/4/7

曲線 $y = \sqrt{x}$ と $x$軸、および直線 $x=3$ で囲まれる部分を、$x$軸の周りに回転させてできる立体の体積 $V$ を求める問題です。ただし、問題文には $V = \fra...

積分回転体の体積定積分関数のグラフ
2025/4/7

定積分 $\int_{\frac{1}{\sqrt{3}}}^{1} \frac{1}{x^2 + 1} dx$ を計算し、その結果から $\frac{46}{47 \cdot 48} \pi$ を引...

定積分arctan積分
2025/4/7

定積分 $\int_0^1 xe^x dx$ を計算します。

積分定積分部分積分指数関数
2025/4/7