半径9cm、弧の長さが6πcmの扇形の中心角を求める問題です。円周率は $\pi$ を使います。

幾何学扇形弧の長さ中心角角度
2025/6/3

1. 問題の内容

半径9cm、弧の長さが6πcmの扇形の中心角を求める問題です。円周率は π\pi を使います。

2. 解き方の手順

扇形の弧の長さ ll、半径 rr、中心角 xx (度) の間には、次の関係が成り立ちます。
l=2πr×x360l = 2\pi r \times \frac{x}{360}
この式に問題文で与えられた値を代入して、xx について解きます。
6π=2π×9×x3606\pi = 2\pi \times 9 \times \frac{x}{360}
両辺を 2π2\pi で割ると、
3=9×x3603 = 9 \times \frac{x}{360}
両辺を9で割ると、
13=x360\frac{1}{3} = \frac{x}{360}
両辺に360をかけると、
x=3603=120x = \frac{360}{3} = 120
したがって、中心角は120度です。

3. 最終的な答え

120°

「幾何学」の関連問題

$\theta$ の動径が第4象限にあり、$\tan \theta = -\frac{1}{2}$ のとき、$\sin \theta$ と $\cos \theta$ の値を求めよ。

三角比三角関数象限tansincos
2025/6/4

3点 $A(-1, 2)$, $B(5, -1)$, $C(6, 1)$ について、以下の問題を解く。 (1) 直線ABの方程式を求める。 (2) 点Cと直線ABの距離を求める。 (3) $\tria...

座標平面直線の方程式点と直線の距離三角形の面積ベクトル
2025/6/4

$\theta$ の動径が第3象限にあり、$\cos \theta = -\frac{12}{13}$ のとき、$\sin \theta$ と $\tan \theta$ の値を求めよ。

三角関数三角比象限
2025/6/4

点と直線の距離を求める問題です。 (1) 原点 $(0, 0)$ と直線 $2x - 3y + 6 = 0$ の距離を求めます。 (2) 点 $(-2, 5)$ と直線 $y = -4x + 1$ の...

点と直線の距離座標平面公式
2025/6/4

与えられた条件から、以下の直線の媒介変数表示を求めます。 (1) 点 $(1, 4)$ を通り、方向ベクトルが $(2, 3)$ の直線 (2) 点 $(3, 5)$ を通り、方向ベクトルが $(4,...

ベクトル直線媒介変数表示
2025/6/4

問題3は、与えられた角 $\theta$ に対して、$\sin \theta$, $\cos \theta$, $\tan \theta$ の値を求める問題です。$\theta$は弧度法で与えられてい...

三角関数弧度法三角比sincostan
2025/6/4

三角形ABCがあり、その辺AB, ACの延長線と辺BCに円Oが接しています。AB = 13, BC = 9, AC = 8です。 (1) 円Oと直線ABの接点をDとするとき、ADの長さを求めます。 (...

三角形接線傍接円ヘロンの公式
2025/6/4

三角形ABCにおいて、角Aの二等分線APが辺BCと交わっている。AB = 9, AC = 6, PC = 3のとき、BP = xの値を求める。

角の二等分線の定理三角形
2025/6/4

三角形ABCにおいて、角Aの一部が30度、角Cの一部が36度であり、点Iは三角形の内心である。このとき、角Bの角度$x$を求める。

三角形内角内心角度
2025/6/4

三角形ABCにおいて、角Bが25度、点Iは三角形ABCの内心である。角CIBが50度であるとき、角BAC(角x)の大きさを求めよ。

三角形内角内心角度
2025/6/4