方程式 $4x - a = x - 1$ の解が $x = 3$ であるとき、$a$ の値を求めよ。

代数学一次方程式代入方程式の解
2025/6/3

1. 問題の内容

方程式 4xa=x14x - a = x - 1 の解が x=3x = 3 であるとき、aa の値を求めよ。

2. 解き方の手順

まず、与えられた方程式 4xa=x14x - a = x - 1 に、x=3x = 3 を代入します。
4(3)a=314(3) - a = 3 - 1
次に、式を計算します。
12a=212 - a = 2
次に、aa について解きます。両辺に aa を足し、両辺から 22 を引きます。
12a+a2=2+a212 - a + a - 2 = 2 + a - 2
10=a10 = a
したがって、a=10a = 10 となります。

3. 最終的な答え

a=10a = 10

「代数学」の関連問題

与えられた2次関数 $y = -x^2 + (4m-3)x + 8m - 3$ のグラフが、$x$軸の負の部分と異なる2点で交わるための $m$ の条件を求める問題です。

二次関数二次方程式判別式グラフ不等式
2025/6/4

複素数 $z_1 = \sqrt{3} + i$ と $z_2 = \sqrt{2} + \sqrt{2}i$ が与えられています。 (1) $\overline{z_1}$ (2) $z_1 z_2...

複素数極形式共役複素数複素数の積複素数の商
2025/6/4

複素数 $z_1$ と $z_2$ が与えられているとき、以下の複素数を極形式で表現する問題です。 (1) $\overline{z_1}$ ( $z_1$ の共役複素数) (2) $z_1 z_2$...

複素数極形式共役複素数複素数の積複素数の商
2025/6/4

複素数 $z_1 = 1 + 2i$ と $z_2 = \sqrt{2} + \sqrt{2}i$ を複素数平面上のベクトルとして表現する問題です。

複素数複素数平面複素数の表現
2025/6/4

問題は、複素数 $z_1$ と $z_2$ が与えられたとき、$\frac{z_1}{z_2}$ を求める問題の一部であるように見えます。ただし、問題文は途中で途切れており、$\frac{z_1}{z...

複素数複素数の除算複素数の演算
2025/6/4

(6) 複素数 $z_1 = 1 + 2i$ に対して、$2z_1$ を計算する。 (7) 複素数 $z_1 = 1 + 2i$ と $z_2 = \sqrt{2} + \sqrt{2}i$ が与えら...

複素数複素数の演算複素共役
2025/6/4

与えられた式 $8^{\log_2 3}$ の値を計算します。

対数指数計算
2025/6/4

全体集合を実数全体の集合 $U$ とする。集合 $A$, $B$ をそれぞれ $A = \{x | -2 \le x < 4\}$, $B = \{x | -5 < x \le 3\}$ とする。また...

集合集合演算補集合論理
2025/6/4

与えられた対数に関する式を整理する問題です。具体的には、以下の4つの問題を解きます。 (1) $\log_2 16$ (2) $\log_7 1$ (3) $\log_{\sqrt{2}} 8$ (4...

対数対数計算対数の性質
2025/6/4

$(\sqrt{3} + \sqrt{5})^2$ を展開し、簡略化する問題です。展開した結果を $a + b\sqrt{c}$ の形に変形し、$a$, $b$, $c$ の値を求めます。

展開平方根式の簡略化根号
2025/6/4