与えられた数式の値を計算します。数式は、$|2\sqrt{2} - \pi| + |\frac{1+\sqrt{2}}{1-\sqrt{2}}|$ です。ここで、$\pi$ は円周率を表します。

代数学絶対値平方根有理化数式の計算円周率
2025/6/3

1. 問題の内容

与えられた数式の値を計算します。数式は、22π+1+212|2\sqrt{2} - \pi| + |\frac{1+\sqrt{2}}{1-\sqrt{2}}| です。ここで、π\pi は円周率を表します。

2. 解き方の手順

まず、222\sqrt{2}π\pi の値を比較します。21.414\sqrt{2} \approx 1.414 であるため、222.8282\sqrt{2} \approx 2.828 です。一方、π3.14159\pi \approx 3.14159 です。したがって、22<π2\sqrt{2} < \pi となり、22π2\sqrt{2} - \pi は負の数です。絶対値を取ると、π22\pi - 2\sqrt{2} となります。
次に、1+212\frac{1+\sqrt{2}}{1-\sqrt{2}} を計算します。分母を有理化するために、分母と分子に 1+21+\sqrt{2} を掛けます。
1+212=(1+2)(1+2)(12)(1+2)=1+22+212=3+221=322\frac{1+\sqrt{2}}{1-\sqrt{2}} = \frac{(1+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})} = \frac{1 + 2\sqrt{2} + 2}{1 - 2} = \frac{3 + 2\sqrt{2}}{-1} = -3 - 2\sqrt{2}
したがって、1+212=322=(3+22)=3+22|\frac{1+\sqrt{2}}{1-\sqrt{2}}| = |-3 - 2\sqrt{2}| = |-(3 + 2\sqrt{2})| = 3 + 2\sqrt{2}
与えられた式は、22π+1+212=(π22)+(3+22)|2\sqrt{2} - \pi| + |\frac{1+\sqrt{2}}{1-\sqrt{2}}| = (\pi - 2\sqrt{2}) + (3 + 2\sqrt{2}) となります。
(π22)+(3+22)=π+3(\pi - 2\sqrt{2}) + (3 + 2\sqrt{2}) = \pi + 3

3. 最終的な答え

π+3\pi + 3

「代数学」の関連問題

問題5の(1)から(3)までを因数分解する問題です。 (1) $2x^2 + 5xy + 2y^2 + 4x - y - 6$ (2) $(a+b)(b+c)(c+a) + abc$ (3) $(x-...

因数分解多項式
2025/6/5

問題は、式 $(x+2y-z)(3x+4y+2z)(-x+y-3z)$ を展開したときの、$xyz$ の項の係数を求める問題です。

多項式の展開係数代数
2025/6/5

与えられた数式を因数分解する問題です。具体的には、 (1) $5a^3 - 20ab^2$ (3) $4x^2 - 4y^2 + 4y - 1$ (5) $4a^4 - 25a^2b^2 + 36b^...

因数分解多項式展開
2025/6/5

問題3は、式 $(x+2y-z)(3x+4y+2z)(-x+y-3z)$ を展開したときの、$xyz$ の係数を求める問題です。

多項式の展開係数代数
2025/6/5

$a$は正の定数とする。関数$y = x^2 - 2x - 1$ ($0 \le x \le a$)について、以下の問いに答える。 (1) 最小値を求めよ。 (2) 最大値を求めよ。

二次関数最大値最小値場合分け定義域
2025/6/5

(1) 2x2の行列 $\begin{vmatrix} 8 & 7 \\ 3 & 4 \end{vmatrix}$ の行列式を求める。 (2) 3x3の行列 $\begin{vmatrix} 3 & ...

行列行列式2x2行列3x3行列サラスの公式
2025/6/5

与えられた連立一次方程式について、係数行列の階数と解空間の次元を求める問題です。連立一次方程式は以下の通りです。 $x_1 + 2x_2 + 4x_3 - x_4 = 0$ $2x_1 + 5x_2 ...

線形代数連立一次方程式階数解空間行基本変形
2025/6/5

与えられた式を簡略化する問題です。式は次のとおりです。 $\frac{(a+b+c)^2 - (a^2+b^2+c^2)}{(a+b)^2+(b+c)^2+(c+a)^2 - 2(a^2+b^2+c^...

式の簡略化展開分数式
2025/6/5

与えられた数式を簡略化して評価します。数式は次のとおりです。 $\frac{9(a + b)^3 - (a + 2b)^3 - (2a + b)^3}{3ab(a + b)}$

式の展開式の簡略化多項式分数式
2025/6/5

与えられた数式を簡略化する問題です。数式は以下の通りです。 $1 + \sqrt{\frac{x}{y}} - \frac{2}{\sqrt{\frac{y}{x}}} + \frac{1}{1 - ...

数式簡略化代数式分数式平方根因数分解式の計算
2025/6/5