画像に書かれた2つの複素数方程式を解く問題です。 (1) $z^6 = 1$ (2) $z^3 = -8i$代数学複素数複素数平面ド・モアブルの定理方程式2025/6/31. 問題の内容画像に書かれた2つの複素数方程式を解く問題です。(1) z6=1z^6 = 1z6=1(2) z3=−8iz^3 = -8iz3=−8i2. 解き方の手順(1) z6=1z^6 = 1z6=1 を解きます。z=r(cosθ+isinθ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ)とおくと、ド・モアブルの定理より、z6=r6(cos6θ+isin6θ)=1z^6 = r^6(\cos 6\theta + i\sin 6\theta) = 1z6=r6(cos6θ+isin6θ)=11=1(cos0+isin0)1 = 1(\cos 0 + i\sin 0)1=1(cos0+isin0)より、r6=1r^6 = 1r6=1なので、r=1r = 1r=1 (rrr は実数なので)6θ=0+2kπ6\theta = 0 + 2k\pi6θ=0+2kπ (kkkは整数)θ=kπ3\theta = \frac{k\pi}{3}θ=3kπ (k=0,1,2,3,4,5k=0, 1, 2, 3, 4, 5k=0,1,2,3,4,5)z=coskπ3+isinkπ3z = \cos \frac{k\pi}{3} + i\sin \frac{k\pi}{3}z=cos3kπ+isin3kπ (k=0,1,2,3,4,5k=0, 1, 2, 3, 4, 5k=0,1,2,3,4,5)k=0k=0k=0のとき z=1z = 1z=1k=1k=1k=1のとき z=cosπ3+isinπ3=12+32iz = \cos \frac{\pi}{3} + i\sin \frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}iz=cos3π+isin3π=21+23ik=2k=2k=2のとき z=cos2π3+isin2π3=−12+32iz = \cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}iz=cos32π+isin32π=−21+23ik=3k=3k=3のとき z=cosπ+isinπ=−1z = \cos \pi + i\sin \pi = -1z=cosπ+isinπ=−1k=4k=4k=4のとき z=cos4π3+isin4π3=−12−32iz = \cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}iz=cos34π+isin34π=−21−23ik=5k=5k=5のとき z=cos5π3+isin5π3=12−32iz = \cos \frac{5\pi}{3} + i\sin \frac{5\pi}{3} = \frac{1}{2} - \frac{\sqrt{3}}{2}iz=cos35π+isin35π=21−23i(2) z3=−8iz^3 = -8iz3=−8i を解きます。−8i=8(cos3π2+isin3π2)-8i = 8(\cos \frac{3\pi}{2} + i\sin \frac{3\pi}{2})−8i=8(cos23π+isin23π)z=r(cosθ+isinθ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ)とおくと、ド・モアブルの定理より、z3=r3(cos3θ+isin3θ)=−8i=8(cos3π2+isin3π2)z^3 = r^3(\cos 3\theta + i\sin 3\theta) = -8i = 8(\cos \frac{3\pi}{2} + i\sin \frac{3\pi}{2})z3=r3(cos3θ+isin3θ)=−8i=8(cos23π+isin23π)r3=8r^3 = 8r3=8より、r=2r = 2r=23θ=3π2+2kπ3\theta = \frac{3\pi}{2} + 2k\pi3θ=23π+2kπ (kkkは整数)θ=π2+2kπ3\theta = \frac{\pi}{2} + \frac{2k\pi}{3}θ=2π+32kπ (k=0,1,2k=0, 1, 2k=0,1,2)k=0k=0k=0のとき θ=π2\theta = \frac{\pi}{2}θ=2π, z=2(cosπ2+isinπ2)=2iz = 2(\cos \frac{\pi}{2} + i\sin \frac{\pi}{2}) = 2iz=2(cos2π+isin2π)=2ik=1k=1k=1のとき θ=π2+2π3=7π6\theta = \frac{\pi}{2} + \frac{2\pi}{3} = \frac{7\pi}{6}θ=2π+32π=67π, z=2(cos7π6+isin7π6)=2(−32−12i)=−3−iz = 2(\cos \frac{7\pi}{6} + i\sin \frac{7\pi}{6}) = 2(-\frac{\sqrt{3}}{2} - \frac{1}{2}i) = -\sqrt{3} - iz=2(cos67π+isin67π)=2(−23−21i)=−3−ik=2k=2k=2のとき θ=π2+4π3=11π6\theta = \frac{\pi}{2} + \frac{4\pi}{3} = \frac{11\pi}{6}θ=2π+34π=611π, z=2(cos11π6+isin11π6)=2(32−12i)=3−iz = 2(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}) = 2(\frac{\sqrt{3}}{2} - \frac{1}{2}i) = \sqrt{3} - iz=2(cos611π+isin611π)=2(23−21i)=3−i3. 最終的な答え(1) z=1,12+32i,−12+32i,−1,−12−32i,12−32iz = 1, \frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}iz=1,21+23i,−21+23i,−1,−21−23i,21−23i(2) z=2i,−3−i,3−iz = 2i, -\sqrt{3} - i, \sqrt{3} - iz=2i,−3−i,3−i