$\sin\theta + \cos\theta = \frac{1}{3}$ $(90^\circ < \theta < 180^\circ)$のとき、$\sin\theta - \cos\theta$と$\tan\theta$の値を求めよ。幾何学三角関数三角比三角恒等式2025/6/31. 問題の内容sinθ+cosθ=13\sin\theta + \cos\theta = \frac{1}{3}sinθ+cosθ=31 (90∘<θ<180∘)(90^\circ < \theta < 180^\circ)(90∘<θ<180∘)のとき、sinθ−cosθ\sin\theta - \cos\thetasinθ−cosθとtanθ\tan\thetatanθの値を求めよ。2. 解き方の手順まず、(sinθ+cosθ)2(\sin\theta + \cos\theta)^2(sinθ+cosθ)2を計算します。 (sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ(\sin\theta + \cos\theta)^2 = \sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = 1 + 2\sin\theta\cos\theta(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθsinθ+cosθ=13\sin\theta + \cos\theta = \frac{1}{3}sinθ+cosθ=31なので、(sinθ+cosθ)2=(13)2=19(\sin\theta + \cos\theta)^2 = (\frac{1}{3})^2 = \frac{1}{9}(sinθ+cosθ)2=(31)2=91したがって、1+2sinθcosθ=191 + 2\sin\theta\cos\theta = \frac{1}{9}1+2sinθcosθ=912sinθcosθ=19−1=−892\sin\theta\cos\theta = \frac{1}{9} - 1 = -\frac{8}{9}2sinθcosθ=91−1=−98sinθcosθ=−49\sin\theta\cos\theta = -\frac{4}{9}sinθcosθ=−94次に、(sinθ−cosθ)2(\sin\theta - \cos\theta)^2(sinθ−cosθ)2を計算します。(sinθ−cosθ)2=sin2θ−2sinθcosθ+cos2θ=1−2sinθcosθ(\sin\theta - \cos\theta)^2 = \sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta = 1 - 2\sin\theta\cos\theta(sinθ−cosθ)2=sin2θ−2sinθcosθ+cos2θ=1−2sinθcosθsinθcosθ=−49\sin\theta\cos\theta = -\frac{4}{9}sinθcosθ=−94を代入すると、(sinθ−cosθ)2=1−2(−49)=1+89=179(\sin\theta - \cos\theta)^2 = 1 - 2(-\frac{4}{9}) = 1 + \frac{8}{9} = \frac{17}{9}(sinθ−cosθ)2=1−2(−94)=1+98=91790∘<θ<180∘90^\circ < \theta < 180^\circ90∘<θ<180∘のとき、sinθ>0\sin\theta > 0sinθ>0かつcosθ<0\cos\theta < 0cosθ<0なので、sinθ−cosθ>0\sin\theta - \cos\theta > 0sinθ−cosθ>0です。したがって、sinθ−cosθ=179=173\sin\theta - \cos\theta = \sqrt{\frac{17}{9}} = \frac{\sqrt{17}}{3}sinθ−cosθ=917=317sinθ+cosθ=13\sin\theta + \cos\theta = \frac{1}{3}sinθ+cosθ=31とsinθ−cosθ=173\sin\theta - \cos\theta = \frac{\sqrt{17}}{3}sinθ−cosθ=317を連立させて、sinθ\sin\thetasinθとcosθ\cos\thetacosθを求めます。sinθ=(sinθ+cosθ)+(sinθ−cosθ)2=13+1732=1+176\sin\theta = \frac{(\sin\theta + \cos\theta) + (\sin\theta - \cos\theta)}{2} = \frac{\frac{1}{3} + \frac{\sqrt{17}}{3}}{2} = \frac{1 + \sqrt{17}}{6}sinθ=2(sinθ+cosθ)+(sinθ−cosθ)=231+317=61+17cosθ=(sinθ+cosθ)−(sinθ−cosθ)2=13−1732=1−176\cos\theta = \frac{(\sin\theta + \cos\theta) - (\sin\theta - \cos\theta)}{2} = \frac{\frac{1}{3} - \frac{\sqrt{17}}{3}}{2} = \frac{1 - \sqrt{17}}{6}cosθ=2(sinθ+cosθ)−(sinθ−cosθ)=231−317=61−17tanθ=sinθcosθ=1+1761−176=1+171−17=(1+17)(1+17)(1−17)(1+17)=1+217+171−17=18+217−16=9+17−8=−9+178\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{\frac{1 + \sqrt{17}}{6}}{\frac{1 - \sqrt{17}}{6}} = \frac{1 + \sqrt{17}}{1 - \sqrt{17}} = \frac{(1 + \sqrt{17})(1 + \sqrt{17})}{(1 - \sqrt{17})(1 + \sqrt{17})} = \frac{1 + 2\sqrt{17} + 17}{1 - 17} = \frac{18 + 2\sqrt{17}}{-16} = \frac{9 + \sqrt{17}}{-8} = -\frac{9 + \sqrt{17}}{8}tanθ=cosθsinθ=61−1761+17=1−171+17=(1−17)(1+17)(1+17)(1+17)=1−171+217+17=−1618+217=−89+17=−89+173. 最終的な答えsinθ−cosθ=173\sin\theta - \cos\theta = \frac{\sqrt{17}}{3}sinθ−cosθ=317tanθ=−9+178\tan\theta = -\frac{9 + \sqrt{17}}{8}tanθ=−89+17