実数 $x, y, z$ が次の3つの関係式を満たすとき、$xyz$, $xy+yz+zx$, $x^2+y^2+z^2$, $x^5+y^5+z^5$ の値を求めよ。 (1) $x+y+z=0$ (2) $x^3+y^3+z^3=1$ (3) $x^4+y^4+z^4=2$

代数学多項式対称式因数分解実数
2025/6/4

1. 問題の内容

実数 x,y,zx, y, z が次の3つの関係式を満たすとき、xyzxyz, xy+yz+zxxy+yz+zx, x2+y2+z2x^2+y^2+z^2, x5+y5+z5x^5+y^5+z^5 の値を求めよ。
(1) x+y+z=0x+y+z=0
(2) x3+y3+z3=1x^3+y^3+z^3=1
(3) x4+y4+z4=2x^4+y^4+z^4=2

2. 解き方の手順

(1) x+y+z=0x+y+z=0 を利用して x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)より、
x3+y3+z33xyz=0x^3+y^3+z^3-3xyz = 0 となる。
(2) x3+y3+z3=1x^3+y^3+z^3 = 1 より、13xyz=01-3xyz=0
したがって、
xyz=13xyz = \frac{1}{3}
(3) x+y+z=0x+y+z=0 の両辺を2乗すると、
(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=0(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=0
したがって、
x2+y2+z2=2(xy+yz+zx)x^2+y^2+z^2 = -2(xy+yz+zx)
(4) (x2+y2+z2)2=x4+y4+z4+2(x2y2+y2z2+z2x2)(x^2+y^2+z^2)^2 = x^4+y^4+z^4+2(x^2y^2+y^2z^2+z^2x^2) より、
x4+y4+z4=(x2+y2+z2)22(x2y2+y2z2+z2x2)x^4+y^4+z^4 = (x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)
x2y2+y2z2+z2x2=(xy+yz+zx)22xyz(x+y+z)=(xy+yz+zx)2x^2y^2+y^2z^2+z^2x^2 = (xy+yz+zx)^2 - 2xyz(x+y+z) = (xy+yz+zx)^2
(5) x4+y4+z4=2x^4+y^4+z^4=2 より、
2=(x2+y2+z2)22(xy+yz+zx)22=(x^2+y^2+z^2)^2-2(xy+yz+zx)^2
2=(2(xy+yz+zx))22(xy+yz+zx)22 = (-2(xy+yz+zx))^2 - 2(xy+yz+zx)^2
2=4(xy+yz+zx)22(xy+yz+zx)22 = 4(xy+yz+zx)^2 - 2(xy+yz+zx)^2
2=2(xy+yz+zx)22 = 2(xy+yz+zx)^2
(xy+yz+zx)2=1(xy+yz+zx)^2 = 1
xy+yz+zx=±1xy+yz+zx = \pm 1
(6) x2+y2+z2=2(xy+yz+zx)x^2+y^2+z^2 = -2(xy+yz+zx) より、
x2+y2+z2=2(±1)=2x^2+y^2+z^2 = -2(\pm 1) = \mp 2
x,y,zx, y, z は実数なので、x2+y2+z20x^2+y^2+z^2 \ge 0 より、
x2+y2+z2=2x^2+y^2+z^2 = 2 であり、xy+yz+zx=1xy+yz+zx = -1
(7) x+y+z=0x+y+z=0 より、z=(x+y)z = -(x+y).
x5+y5+z5=x5+y5(x+y)5x^5+y^5+z^5 = x^5+y^5-(x+y)^5
x5+y5+z5=x5+y5(x5+5x4y+10x3y2+10x2y3+5xy4+y5)x^5+y^5+z^5 = x^5+y^5-(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5)
x5+y5+z5=5(x4y+2x3y2+2x2y3+xy4)=5xy(x3+2x2y+2xy2+y3)x^5+y^5+z^5 = -5(x^4y+2x^3y^2+2x^2y^3+xy^4) = -5xy(x^3+2x^2y+2xy^2+y^3)
x5+y5+z5=5xy(x+y)(x2+xy+y2)x^5+y^5+z^5 = -5xy(x+y)(x^2+xy+y^2)
x5+y5+z5=5xyz(x2+xy+y2)x^5+y^5+z^5 = 5xyz(x^2+xy+y^2)
x5+y5+z5=5xyz((x+y)2xy)x^5+y^5+z^5 = 5xyz((x+y)^2-xy)
x5+y5+z5=5xyz(z2xy)x^5+y^5+z^5 = 5xyz(z^2-xy)
x5+y5+z5=5xyz(x2+y2+z2(xy+yz+zx))x^5+y^5+z^5 = 5xyz(x^2+y^2+z^2 - (xy+yz+zx)) = 51312(2+1)=55 \cdot \frac{1}{3} \cdot \frac{1}{2}(2+1) = 5

3. 最終的な答え

xyz=13xyz = \frac{1}{3}
xy+yz+zx=1xy+yz+zx = -1
x2+y2+z2=2x^2+y^2+z^2 = 2
x5+y5+z5=5x^5+y^5+z^5 = 5

「代数学」の関連問題