与えられた対数方程式 $\log_5 x^2 = 4$ を解く問題です。

代数学対数方程式指数平方根
2025/6/4

1. 問題の内容

与えられた対数方程式 log5x2=4\log_5 x^2 = 4 を解く問題です。

2. 解き方の手順

まず、対数の定義より、logab=c\log_a b = c ならば ac=ba^c = b です。これを利用して、与えられた式を指数形式に変換します。
log5x2=4\log_5 x^2 = 4 を指数形式にすると、
x2=54x^2 = 5^4
となります。
545^4 を計算すると、
54=5×5×5×5=6255^4 = 5 \times 5 \times 5 \times 5 = 625
したがって、
x2=625x^2 = 625
となります。
次に、xx について解きます。両辺の平方根をとると、
x=±625x = \pm \sqrt{625}
x=±25x = \pm 25

3. 最終的な答え

x=25,25x = 25, -25

「代数学」の関連問題

与えられた2次不等式 $x^2 + 2ax - 3a^2 \le 0$ を解け。

二次不等式因数分解場合分け
2025/6/6

実数 $m$ に対して、二次方程式 $x^2 + 2(2m-1)x + 4m^2 - 9 = 0$ が、重解を含めて2つの負の解を持つような、$m$ の値の範囲を求める問題です。

二次方程式判別式解の公式解の符号不等式
2025/6/6

等式 $(x-2y)^2 + (2x+y)^2 = 5(x^2 + y^2)$ を証明するために、左辺 $(x-2y)^2 + (2x+y)^2$ を計算します。

等式の証明式の展開代数計算
2025/6/6

三次方程式 $x^3 - x^2 + x - 1 = 0$ を解き、解 $x = \text{①}, \pm \text{②}i$ の $\text{①}$ と $\text{②}$ に当てはまる数値...

三次方程式因数分解複素数
2025/6/6

与えられた4次方程式 $x^4 - 5x^2 + 4 = 0$ を解き、$x = \pm 1, \pm \text{②}$ の形式で表したときの②に当てはまる数値を求める問題です。

方程式4次方程式二次方程式因数分解解の公式
2025/6/6

与えられた4次方程式 $x^4 - 5x^2 + 4 = 0$ を解き、その解の形式が $x = \pm 1, \pm \text{②}$ であるとき、①に当てはまる数値を答える問題です。

4次方程式二次方程式因数分解解の公式
2025/6/6

与えられた3次方程式 $x^3 + 27 = 0$ の解を求め、与えられた解の形式 $x = -3, (1 \pm (2) i) / 2$ における (2) に当てはまる数字を求める問題です。

3次方程式複素数解の公式方程式の解
2025/6/6

3次方程式 $x^3 - x^2 - 12x = 0$ を解き、3つの解を求めよ。

3次方程式因数分解方程式の解
2025/6/6

与えられた3次方程式 $x^3 - x^2 - 12x = 0$ を解き、$x$の解のうち2番目に小さいものを求める。

三次方程式因数分解方程式の解
2025/6/6

$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ が移されるベクトルを調べることによって、次...

線形代数行列対称移動回転図形
2025/6/6