(1) 三角形 ABC の面積を求める。
ヘロンの公式を使う。s = (AB + BC + CA) / 2 であり、s = (6 + 2 5 2\sqrt{5} 2 5 + 4 2 4\sqrt{2} 4 2 ) / 2 = 3 + 5 \sqrt{5} 5 + 2 2 2\sqrt{2} 2 2 である。 三角形の面積 S は
S = s ( s − a ) ( s − b ) ( s − c ) S = \sqrt{s(s-a)(s-b)(s-c)} S = s ( s − a ) ( s − b ) ( s − c ) S = ( 3 + 5 + 2 2 ) ( − 3 + 5 + 2 2 ) ( 3 − 5 + 2 2 ) ( 3 + 5 − 2 2 ) S = \sqrt{(3+\sqrt{5}+2\sqrt{2})(-3+\sqrt{5}+2\sqrt{2})(3-\sqrt{5}+2\sqrt{2})(3+\sqrt{5}-2\sqrt{2})} S = ( 3 + 5 + 2 2 ) ( − 3 + 5 + 2 2 ) ( 3 − 5 + 2 2 ) ( 3 + 5 − 2 2 ) まずは、 ( − 3 + 5 + 2 2 ) ( 3 + 5 − 2 2 ) (-3+\sqrt{5}+2\sqrt{2})(3+\sqrt{5}-2\sqrt{2}) ( − 3 + 5 + 2 2 ) ( 3 + 5 − 2 2 ) を計算する。 = ( 5 + 2 2 ) 2 − 3 2 = 5 + 8 + 4 10 − 9 = 4 + 4 10 = (\sqrt{5}+2\sqrt{2})^2 - 3^2 = 5+8+4\sqrt{10}-9 = 4+4\sqrt{10} = ( 5 + 2 2 ) 2 − 3 2 = 5 + 8 + 4 10 − 9 = 4 + 4 10 次に、 ( 3 + 5 + 2 2 ) ( 3 − 5 + 2 2 ) (3+\sqrt{5}+2\sqrt{2})(3-\sqrt{5}+2\sqrt{2}) ( 3 + 5 + 2 2 ) ( 3 − 5 + 2 2 ) を計算する。 = ( 3 + 2 2 ) 2 − ( 5 ) 2 = 9 + 8 + 12 2 − 5 = 12 + 12 2 = (3+2\sqrt{2})^2 - (\sqrt{5})^2 = 9+8+12\sqrt{2} - 5 = 12+12\sqrt{2} = ( 3 + 2 2 ) 2 − ( 5 ) 2 = 9 + 8 + 12 2 − 5 = 12 + 12 2 S = ( 4 + 4 10 ) ( 12 + 12 2 ) = 48 ( 1 + 10 ) ( 1 + 2 ) S = \sqrt{(4+4\sqrt{10})(12+12\sqrt{2})} = \sqrt{48(1+\sqrt{10})(1+\sqrt{2})} S = ( 4 + 4 10 ) ( 12 + 12 2 ) = 48 ( 1 + 10 ) ( 1 + 2 ) 余弦定理を使う。
cos B = ( A B 2 + B C 2 − C A 2 ) / ( 2 ⋅ A B ⋅ B C ) = ( 36 + 20 − 32 ) / ( 2 ⋅ 6 ⋅ 2 5 ) = 24 / ( 24 5 ) = 1 / 5 \cos{B} = (AB^2 + BC^2 - CA^2)/(2 \cdot AB \cdot BC) = (36 + 20 - 32)/(2 \cdot 6 \cdot 2\sqrt{5}) = 24/(24\sqrt{5}) = 1/\sqrt{5} cos B = ( A B 2 + B C 2 − C A 2 ) / ( 2 ⋅ A B ⋅ BC ) = ( 36 + 20 − 32 ) / ( 2 ⋅ 6 ⋅ 2 5 ) = 24/ ( 24 5 ) = 1/ 5 sin 2 B = 1 − cos 2 B = 1 − 1 / 5 = 4 / 5 \sin^2{B} = 1 - \cos^2{B} = 1 - 1/5 = 4/5 sin 2 B = 1 − cos 2 B = 1 − 1/5 = 4/5 sin B = 2 / 5 \sin{B} = 2/\sqrt{5} sin B = 2/ 5 S = ( 1 / 2 ) ⋅ A B ⋅ B C ⋅ sin B = ( 1 / 2 ) ⋅ 6 ⋅ 2 5 ⋅ ( 2 / 5 ) = 12 S = (1/2) \cdot AB \cdot BC \cdot \sin{B} = (1/2) \cdot 6 \cdot 2\sqrt{5} \cdot (2/\sqrt{5}) = 12 S = ( 1/2 ) ⋅ A B ⋅ BC ⋅ sin B = ( 1/2 ) ⋅ 6 ⋅ 2 5 ⋅ ( 2/ 5 ) = 12
(2) 線分 AP の長さを求める。
三角形 ABC の外接円の半径 R は、 R = a b c 4 S = 6 ⋅ 2 5 ⋅ 4 2 4 ⋅ 12 = 48 10 48 = 10 R = \frac{abc}{4S} = \frac{6 \cdot 2\sqrt{5} \cdot 4\sqrt{2}}{4 \cdot 12} = \frac{48\sqrt{10}}{48} = \sqrt{10} R = 4 S ab c = 4 ⋅ 12 6 ⋅ 2 5 ⋅ 4 2 = 48 48 10 = 10 AP は外接円の半径なので、 A P = 10 AP = \sqrt{10} A P = 10
(3) 四面体 ABCD の体積を求めよ。
DP は円に垂直なので、DP を高さと考えることができる。
AD = 2 15 2\sqrt{15} 2 15 , AP = 10 \sqrt{10} 10 D P = A D 2 − A P 2 = ( 2 15 ) 2 − ( 10 ) 2 = 60 − 10 = 50 = 5 2 DP = \sqrt{AD^2 - AP^2} = \sqrt{(2\sqrt{15})^2 - (\sqrt{10})^2} = \sqrt{60 - 10} = \sqrt{50} = 5\sqrt{2} D P = A D 2 − A P 2 = ( 2 15 ) 2 − ( 10 ) 2 = 60 − 10 = 50 = 5 2 四面体 ABCD の体積 V は
V = ( 1 / 3 ) ⋅ S A B C ⋅ D P = ( 1 / 3 ) ⋅ 12 ⋅ 5 2 = 20 2 V = (1/3) \cdot S_{ABC} \cdot DP = (1/3) \cdot 12 \cdot 5\sqrt{2} = 20\sqrt{2} V = ( 1/3 ) ⋅ S A BC ⋅ D P = ( 1/3 ) ⋅ 12 ⋅ 5 2 = 20 2
(4) 球 S の半径と球 S の表面積を求めよ。
球の中心を O とする。OA = OB = OC = OD = r とする。
OP = x とすると、 r 2 = A P 2 + x 2 r^2 = AP^2 + x^2 r 2 = A P 2 + x 2 r 2 = ( 10 ) 2 + x 2 = 10 + x 2 r^2 = (\sqrt{10})^2 + x^2 = 10+x^2 r 2 = ( 10 ) 2 + x 2 = 10 + x 2 O D 2 = r 2 = D P 2 + O P 2 = ( 5 2 ) 2 + ( O D − D P ) 2 OD^2 = r^2 = DP^2 + OP^2 = (5\sqrt{2})^2 + (OD-DP)^2 O D 2 = r 2 = D P 2 + O P 2 = ( 5 2 ) 2 + ( O D − D P ) 2 r = 10 + x 2 r = \sqrt{10+x^2} r = 10 + x 2 O D = r OD = r O D = r , OP = ∣ x ∣ |x| ∣ x ∣ O D = ∣ O P ∣ + D P OD = |OP| + DP O D = ∣ OP ∣ + D P D P = 5 2 DP = 5\sqrt{2} D P = 5 2 r = ∣ x ∣ + 5 2 r = |x| + 5\sqrt{2} r = ∣ x ∣ + 5 2 r 2 = x 2 + 10 r^2 = x^2 + 10 r 2 = x 2 + 10 ( ∣ x ∣ + 5 2 ) 2 = x 2 + 10 (|x|+5\sqrt{2})^2 = x^2+10 ( ∣ x ∣ + 5 2 ) 2 = x 2 + 10 x 2 + 10 2 ∣ x ∣ + 50 = x 2 + 10 x^2+10\sqrt{2}|x|+50 = x^2+10 x 2 + 10 2 ∣ x ∣ + 50 = x 2 + 10 10 2 ∣ x ∣ = − 40 10\sqrt{2}|x| = -40 10 2 ∣ x ∣ = − 40 ∣ x ∣ = − 4 / 2 < 0 |x| = -4/\sqrt{2} < 0 ∣ x ∣ = − 4/ 2 < 0 これはありえない。 よって O P = 2 2 OP = 2\sqrt{2} OP = 2 2 r = 5 2 + ∣ O P ∣ = 5 2 + 2 2 = 7 2 r = 5\sqrt{2} + |OP| = 5\sqrt{2} +2\sqrt{2} = 7\sqrt{2} r = 5 2 + ∣ OP ∣ = 5 2 + 2 2 = 7 2 表面積 = 4 π r 2 = 4 ⋅ π ⋅ ( 7 2 ) 2 = 4 ⋅ π ⋅ 98 = 392 π 4\pi r^2 = 4 \cdot \pi \cdot (7\sqrt{2})^2 = 4 \cdot \pi \cdot 98 = 392\pi 4 π r 2 = 4 ⋅ π ⋅ ( 7 2 ) 2 = 4 ⋅ π ⋅ 98 = 392 π