$x+y+z=4$、$xy+yz+zx=2$のとき、$x^2+y^2+z^2$の値を求めよ。

代数学多項式式の展開対称式
2025/6/8

1. 問題の内容

x+y+z=4x+y+z=4xy+yz+zx=2xy+yz+zx=2のとき、x2+y2+z2x^2+y^2+z^2の値を求めよ。

2. 解き方の手順

(x+y+z)2(x+y+z)^2を展開すると、
(x+y+z)2=x2+y2+z2+2(xy+yz+zx)(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+zx)
となることを利用します。
x+y+z=4x+y+z=4であるから、
(x+y+z)2=42=16(x+y+z)^2 = 4^2 = 16
xy+yz+zx=2xy+yz+zx=2であるから、
2(xy+yz+zx)=2×2=42(xy+yz+zx) = 2 \times 2 = 4
したがって、
x2+y2+z2=(x+y+z)22(xy+yz+zx)x^2+y^2+z^2 = (x+y+z)^2 - 2(xy+yz+zx)
x2+y2+z2=164x^2+y^2+z^2 = 16 - 4
x2+y2+z2=12x^2+y^2+z^2 = 12

3. 最終的な答え

x2+y2+z2=12x^2+y^2+z^2 = 12

「代数学」の関連問題

$a, b$ は実数である。2次方程式 $x^2 + ax + b = 0$ が $3 + 2i$ を解に持つとき、定数 $a, b$ の値と他の解を求めよ。

二次方程式複素数解と係数の関係
2025/6/8

複素数の絶対値の差を計算する問題です。 具体的には、$|-2 + \sqrt{3}i| - |-\sqrt{6} - i|$ を計算します。

複素数絶対値複素数の絶対値
2025/6/8

$0 \le \theta < 2\pi$ のとき、$f(\theta) = \cos 2\theta - \sin \theta$ について、以下の問いに答える。 (1) 方程式 $2\sin \t...

三角関数不等式二次関数三角方程式
2025/6/8

与えられた数式の値を計算します。問題は次の通りです。 $\sqrt{\pi^2 - 6\pi + 9} + \sqrt{\pi^2 - 8\pi + 16}$

平方根絶対値因数分解数式計算
2025/6/8

2次方程式 $2x^2 + 10x + p = 0$ の1つの解が $\frac{1}{2}$ であるとき、もう一つの解と $p$ の値を求める問題です。

二次方程式解の公式
2025/6/8

次の方程式と不等式を解く問題です。 (1) $|x-1| = 2x$ (2) $|2x-4| \le x$ (3) $|x+1| + |x-3| = 6$ (4) $|2x+1| \le |2x-1|...

絶対値不等式方程式場合分け
2025/6/8

連立一次方程式を解く問題です。 与えられた連立方程式は以下の通りです。 $ \begin{cases} x + 3y = 1 \\ y = 2x - 9 \end{cases} $

連立方程式代入法一次方程式
2025/6/8

与えられた連立方程式を解いて、$x$ と $y$ の値を求める。連立方程式は以下の通りです。 $ \begin{cases} 2x + 7y = -1 \\ x = 1 - 3y \end{cases...

連立方程式代入法一次方程式
2025/6/8

$0 \le \theta < 2\pi$ のとき、$f(\theta) = \cos 2\theta - \sin \theta$ とする。 (1) 方程式 $2\sin\theta - 1 = 0...

三角関数三角方程式三角不等式二次関数
2025/6/8

係数が実数である3次式 $P(x) = x^3 + ax^2 + bx + a$ について、以下の問いに答えます。 (1) $a=0, b=1$ のとき、方程式 $P(x) = 0$ を解きます。 (...

三次方程式複素数解の公式因数定理
2025/6/8