$x + \frac{1}{x} = \sqrt{2}+1$ のとき、$x^2 + \frac{1}{x^2}$ の値を求めよ。代数学式の計算2乗分数式2025/6/101. 問題の内容x+1x=2+1x + \frac{1}{x} = \sqrt{2}+1x+x1=2+1 のとき、x2+1x2x^2 + \frac{1}{x^2}x2+x21 の値を求めよ。2. 解き方の手順まず、x+1x=2+1x + \frac{1}{x} = \sqrt{2}+1x+x1=2+1 の両辺を2乗します。(x+1x)2=(2+1)2(x + \frac{1}{x})^2 = (\sqrt{2}+1)^2(x+x1)2=(2+1)2x2+2⋅x⋅1x+1x2=(2)2+2⋅2⋅1+12x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = (\sqrt{2})^2 + 2 \cdot \sqrt{2} \cdot 1 + 1^2x2+2⋅x⋅x1+x21=(2)2+2⋅2⋅1+12x2+2+1x2=2+22+1x^2 + 2 + \frac{1}{x^2} = 2 + 2\sqrt{2} + 1x2+2+x21=2+22+1x2+2+1x2=3+22x^2 + 2 + \frac{1}{x^2} = 3 + 2\sqrt{2}x2+2+x21=3+22両辺から2を引きます。x2+1x2=3+22−2x^2 + \frac{1}{x^2} = 3 + 2\sqrt{2} - 2x2+x21=3+22−2x2+1x2=1+22x^2 + \frac{1}{x^2} = 1 + 2\sqrt{2}x2+x21=1+223. 最終的な答えx2+1x2=1+22x^2 + \frac{1}{x^2} = 1 + 2\sqrt{2}x2+x21=1+22