与えられた等式 $2(a+b) + 5(-a + 2b) = pa + 12b$ が成り立つとき、$p$ の値を求める問題です。

代数学一次方程式式の展開係数比較
2025/6/11

1. 問題の内容

与えられた等式 2(a+b)+5(a+2b)=pa+12b2(a+b) + 5(-a + 2b) = pa + 12b が成り立つとき、pp の値を求める問題です。

2. 解き方の手順

まず、左辺を展開して整理します。
2(a+b)+5(a+2b)=2a+2b5a+10b2(a+b) + 5(-a + 2b) = 2a + 2b - 5a + 10b
次に、同類項をまとめます。
2a5a+2b+10b=3a+12b2a - 5a + 2b + 10b = -3a + 12b
したがって、
3a+12b=pa+12b-3a + 12b = pa + 12b
この等式が任意の a,ba, b について成り立つためには、aa の係数が等しくなければなりません。
つまり、p=3p = -3 となります。

3. 最終的な答え

p=3p = -3

「代数学」の関連問題

与えられた連立方程式を解きます。連立方程式は次の通りです。 $ \begin{cases} 3x + 7y = -9 \\ 2x + 3y = -1 \end{cases} $

連立方程式加減法一次方程式
2025/6/12

与えられた1次方程式 $4x - 7 + 3x = 7$ を解く問題です。

一次方程式方程式の解法代数
2025/6/12

以下の連立方程式を解いてください。 $\begin{cases} \frac{2}{x} + \frac{3}{y} = 8 \\ \frac{4}{x} - \frac{3}{y} = -2 \en...

連立方程式分数代入法
2025/6/12

与えられた複素数を極形式で表す問題です。偏角 $\theta$ の範囲は $0 \le \theta < 2\pi$ とします。 (1) $-1+i$ (2) $4-4\sqrt{3}i$ (3) $...

複素数極形式絶対値偏角
2025/6/12

1次方程式 $6x - 8 = 4x + 2$ を解きます。

一次方程式方程式解法
2025/6/12

横の長さが5cmの長方形の周囲の長さが $l$ cmであるとき、縦の長さを $l$ を用いて表す問題です。

長方形周囲の長さ一次方程式変数
2025/6/12

0°≤θ≤180°において、2次方程式 $x^2 + (\sqrt{2}\sin{2\theta})x + 2\cos{\theta} = 0$ を考える。 (1) この方程式が異なる2つの実数解を持...

二次方程式三角関数判別式無限等比級数解の公式
2025/6/12

290の(1)の問題は、$\theta$ が方程式 $\cos{2\theta} - 2\sin{\theta} = \frac{1}{2}$ を満たすとき、$\sin{\theta}$ の値を求める...

三角関数二次方程式解の公式三角関数の合成
2025/6/12

与えられた式を解いて、$x$の値を求めます。式は $2 = \sqrt{x(2 - \sqrt{3})}$ です。

方程式平方根有理化
2025/6/12

与えられた式を簡略化(簡単化)する問題です。与えられた式は $(\frac{x}{3} - 1) / (\sqrt{2x} - \sqrt{2})$ です。

式の簡略化有理化分数式
2025/6/12