$x = \frac{1}{3+2\sqrt{2}}$、$y = \frac{1}{3-2\sqrt{2}}$のとき、以下の値を求めます。 (1) $x+y$ (2) $x^2 + y^2$代数学式の計算有理化平方根式の値2025/6/121. 問題の内容x=13+22x = \frac{1}{3+2\sqrt{2}}x=3+221、y=13−22y = \frac{1}{3-2\sqrt{2}}y=3−221のとき、以下の値を求めます。(1) x+yx+yx+y(2) x2+y2x^2 + y^2x2+y22. 解き方の手順(1) x+yx+yx+yを計算します。x=13+22x = \frac{1}{3+2\sqrt{2}}x=3+221とy=13−22y = \frac{1}{3-2\sqrt{2}}y=3−221を通分して足し合わせます。x+y=13+22+13−22x+y = \frac{1}{3+2\sqrt{2}} + \frac{1}{3-2\sqrt{2}}x+y=3+221+3−221x+y=(3−22)+(3+22)(3+22)(3−22)x+y = \frac{(3-2\sqrt{2}) + (3+2\sqrt{2})}{(3+2\sqrt{2})(3-2\sqrt{2})}x+y=(3+22)(3−22)(3−22)+(3+22)x+y=632−(22)2=69−8=61=6x+y = \frac{6}{3^2 - (2\sqrt{2})^2} = \frac{6}{9 - 8} = \frac{6}{1} = 6x+y=32−(22)26=9−86=16=6(2) x2+y2x^2+y^2x2+y2を計算します。x2+y2=(x+y)2−2xyx^2 + y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xyx+y=6x+y = 6x+y=6であることはすでに求めています。次に、xyxyxyを計算します。xy=13+22⋅13−22=1(3+22)(3−22)=132−(22)2=19−8=11=1xy = \frac{1}{3+2\sqrt{2}} \cdot \frac{1}{3-2\sqrt{2}} = \frac{1}{(3+2\sqrt{2})(3-2\sqrt{2})} = \frac{1}{3^2 - (2\sqrt{2})^2} = \frac{1}{9 - 8} = \frac{1}{1} = 1xy=3+221⋅3−221=(3+22)(3−22)1=32−(22)21=9−81=11=1よって、x2+y2=(x+y)2−2xy=62−2(1)=36−2=34x^2 + y^2 = (x+y)^2 - 2xy = 6^2 - 2(1) = 36 - 2 = 34x2+y2=(x+y)2−2xy=62−2(1)=36−2=343. 最終的な答え(1) x+y=6x+y = 6x+y=6(2) x2+y2=34x^2+y^2 = 34x2+y2=34