和 $S = 3 \cdot 2 + 5 \cdot 2^2 + 7 \cdot 2^3 + \dots + (2n+1) \cdot 2^n$ を求めよ。代数学数列級数等比数列和の公式2025/6/121. 問題の内容和 S=3⋅2+5⋅22+7⋅23+⋯+(2n+1)⋅2nS = 3 \cdot 2 + 5 \cdot 2^2 + 7 \cdot 2^3 + \dots + (2n+1) \cdot 2^nS=3⋅2+5⋅22+7⋅23+⋯+(2n+1)⋅2n を求めよ。2. 解き方の手順与えられた和をSSSとする。S=3⋅2+5⋅22+7⋅23+⋯+(2n+1)⋅2nS = 3 \cdot 2 + 5 \cdot 2^2 + 7 \cdot 2^3 + \dots + (2n+1) \cdot 2^nS=3⋅2+5⋅22+7⋅23+⋯+(2n+1)⋅2nこの式に2をかけると、2S=3⋅22+5⋅23+7⋅24+⋯+(2n+1)⋅2n+12S = 3 \cdot 2^2 + 5 \cdot 2^3 + 7 \cdot 2^4 + \dots + (2n+1) \cdot 2^{n+1}2S=3⋅22+5⋅23+7⋅24+⋯+(2n+1)⋅2n+1上の2つの式を引き算する。S−2S=3⋅2+(5−3)⋅22+(7−5)⋅23+⋯+(2n+1−(2(n−1)+1))⋅2n−(2n+1)⋅2n+1S - 2S = 3 \cdot 2 + (5-3) \cdot 2^2 + (7-5) \cdot 2^3 + \dots + (2n+1 - (2(n-1)+1)) \cdot 2^n - (2n+1) \cdot 2^{n+1}S−2S=3⋅2+(5−3)⋅22+(7−5)⋅23+⋯+(2n+1−(2(n−1)+1))⋅2n−(2n+1)⋅2n+1−S=6+2⋅22+2⋅23+⋯+2⋅2n−(2n+1)⋅2n+1-S = 6 + 2 \cdot 2^2 + 2 \cdot 2^3 + \dots + 2 \cdot 2^n - (2n+1) \cdot 2^{n+1}−S=6+2⋅22+2⋅23+⋯+2⋅2n−(2n+1)⋅2n+1−S=6+23+24+⋯+2n+1−(2n+1)⋅2n+1-S = 6 + 2^3 + 2^4 + \dots + 2^{n+1} - (2n+1) \cdot 2^{n+1}−S=6+23+24+⋯+2n+1−(2n+1)⋅2n+1−S=6+∑k=3n+12k−(2n+1)⋅2n+1-S = 6 + \sum_{k=3}^{n+1} 2^k - (2n+1) \cdot 2^{n+1}−S=6+∑k=3n+12k−(2n+1)⋅2n+1等比数列の和の公式 ∑k=0nrk=1−rn+11−r\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}∑k=0nrk=1−r1−rn+1 を用いる。∑k=3n+12k=∑k=0n+12k−20−21−22=1−2n+21−2−1−2−4=2n+2−1−7=2n+2−8\sum_{k=3}^{n+1} 2^k = \sum_{k=0}^{n+1} 2^k - 2^0 - 2^1 - 2^2 = \frac{1-2^{n+2}}{1-2} - 1 - 2 - 4 = 2^{n+2} - 1 - 7 = 2^{n+2} - 8∑k=3n+12k=∑k=0n+12k−20−21−22=1−21−2n+2−1−2−4=2n+2−1−7=2n+2−8−S=6+2n+2−8−(2n+1)⋅2n+1-S = 6 + 2^{n+2} - 8 - (2n+1) \cdot 2^{n+1}−S=6+2n+2−8−(2n+1)⋅2n+1−S=2n+2−2−(2n+1)⋅2n+1-S = 2^{n+2} - 2 - (2n+1) \cdot 2^{n+1}−S=2n+2−2−(2n+1)⋅2n+1−S=2⋅2n+1−2−(2n+1)⋅2n+1-S = 2 \cdot 2^{n+1} - 2 - (2n+1) \cdot 2^{n+1}−S=2⋅2n+1−2−(2n+1)⋅2n+1−S=(2−(2n+1))⋅2n+1−2-S = (2 - (2n+1)) \cdot 2^{n+1} - 2−S=(2−(2n+1))⋅2n+1−2−S=(−2n+1)⋅2n+1−2-S = (-2n+1) \cdot 2^{n+1} - 2−S=(−2n+1)⋅2n+1−2S=(2n−1)⋅2n+1+2S = (2n-1) \cdot 2^{n+1} + 2S=(2n−1)⋅2n+1+2S=(2n−1)⋅2⋅2n+2S = (2n-1) \cdot 2 \cdot 2^n + 2S=(2n−1)⋅2⋅2n+2S=(4n−2)⋅2n+2S = (4n-2) \cdot 2^n + 2S=(4n−2)⋅2n+23. 最終的な答えS=(4n−2)2n+2S = (4n-2)2^n + 2S=(4n−2)2n+2