関数 $y = \frac{1}{x + \sqrt{x^2 - 1}}$ を微分せよ。解析学微分関数の微分合成関数の微分ルート2025/6/121. 問題の内容関数 y=1x+x2−1y = \frac{1}{x + \sqrt{x^2 - 1}}y=x+x2−11 を微分せよ。2. 解き方の手順まず、yyy を xxx で微分することを考えます。yyy は xxx の関数として表されているので、微分を実行できます。y=1x+x2−1y = \frac{1}{x + \sqrt{x^2 - 1}}y=x+x2−11 なので、y=(x+x2−1)−1y = (x + \sqrt{x^2 - 1})^{-1}y=(x+x2−1)−1 と書き換えることができます。合成関数の微分公式を用いると、dydx=−1(x+x2−1)−2⋅ddx(x+x2−1)\frac{dy}{dx} = -1(x + \sqrt{x^2 - 1})^{-2} \cdot \frac{d}{dx}(x + \sqrt{x^2 - 1})dxdy=−1(x+x2−1)−2⋅dxd(x+x2−1)となります。ここで、ddx(x+x2−1)\frac{d}{dx}(x + \sqrt{x^2 - 1})dxd(x+x2−1) を計算します。ddx(x)=1\frac{d}{dx}(x) = 1dxd(x)=1 であり、ddx(x2−1)=12x2−1⋅ddx(x2−1)=12x2−1⋅2x=xx2−1\frac{d}{dx}(\sqrt{x^2 - 1}) = \frac{1}{2\sqrt{x^2 - 1}} \cdot \frac{d}{dx}(x^2 - 1) = \frac{1}{2\sqrt{x^2 - 1}} \cdot 2x = \frac{x}{\sqrt{x^2 - 1}}dxd(x2−1)=2x2−11⋅dxd(x2−1)=2x2−11⋅2x=x2−1xしたがって、ddx(x+x2−1)=1+xx2−1=x2−1+xx2−1\frac{d}{dx}(x + \sqrt{x^2 - 1}) = 1 + \frac{x}{\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1} + x}{\sqrt{x^2 - 1}}dxd(x+x2−1)=1+x2−1x=x2−1x2−1+xdydx=−(x+x2−1)−2⋅x+x2−1x2−1=−1(x+x2−1)2⋅x+x2−1x2−1\frac{dy}{dx} = -(x + \sqrt{x^2 - 1})^{-2} \cdot \frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} = -\frac{1}{(x + \sqrt{x^2 - 1})^2} \cdot \frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}dxdy=−(x+x2−1)−2⋅x2−1x+x2−1=−(x+x2−1)21⋅x2−1x+x2−1dydx=−1(x+x2−1)x2−1\frac{dy}{dx} = - \frac{1}{(x + \sqrt{x^2 - 1}) \sqrt{x^2 - 1}}dxdy=−(x+x2−1)x2−11ここで、y=1x+x2−1y = \frac{1}{x + \sqrt{x^2 - 1}}y=x+x2−11 なので、x+x2−1=1yx + \sqrt{x^2 - 1} = \frac{1}{y}x+x2−1=y1したがって、dydx=−11yx2−1=−yx2−1\frac{dy}{dx} = - \frac{1}{\frac{1}{y} \sqrt{x^2 - 1}} = - \frac{y}{\sqrt{x^2 - 1}}dxdy=−y1x2−11=−x2−1yy=1x+x2−1=x−x2−1y = \frac{1}{x + \sqrt{x^2 - 1}} = x - \sqrt{x^2 - 1}y=x+x2−11=x−x2−1dydx=−x−x2−1x2−1=−xx2−1+1\frac{dy}{dx} = - \frac{x - \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} = - \frac{x}{\sqrt{x^2 - 1}} + 1dxdy=−x2−1x−x2−1=−x2−1x+1別の解法として、まず関数を変形します。y=1x+x2−1=x−x2−1(x+x2−1)(x−x2−1)=x−x2−1x2−(x2−1)=x−x2−1y = \frac{1}{x + \sqrt{x^2 - 1}} = \frac{x - \sqrt{x^2 - 1}}{(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1})} = \frac{x - \sqrt{x^2 - 1}}{x^2 - (x^2 - 1)} = x - \sqrt{x^2 - 1}y=x+x2−11=(x+x2−1)(x−x2−1)x−x2−1=x2−(x2−1)x−x2−1=x−x2−1よって、y=x−x2−1y = x - \sqrt{x^2 - 1}y=x−x2−1dydx=1−12x2−1(2x)=1−xx2−1=x2−1−xx2−1\frac{dy}{dx} = 1 - \frac{1}{2\sqrt{x^2 - 1}} (2x) = 1 - \frac{x}{\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1} - x}{\sqrt{x^2 - 1}}dxdy=1−2x2−11(2x)=1−x2−1x=x2−1x2−1−x3. 最終的な答えdydx=x2−1−xx2−1\frac{dy}{dx} = \frac{\sqrt{x^2 - 1} - x}{\sqrt{x^2 - 1}}dxdy=x2−1x2−1−xまたはdydx=1−xx2−1\frac{dy}{dx} = 1 - \frac{x}{\sqrt{x^2 - 1}}dxdy=1−x2−1x