問題499は、数列の和 $\sum_{k=1}^{n} \frac{1}{k(k+2)}$ を求める問題です。解析学数列級数部分分数分解telescoping sum和2025/6/121. 問題の内容問題499は、数列の和 ∑k=1n1k(k+2)\sum_{k=1}^{n} \frac{1}{k(k+2)}∑k=1nk(k+2)1 を求める問題です。2. 解き方の手順まず、部分分数分解を行います。1k(k+2)\frac{1}{k(k+2)}k(k+2)1 を Ak+Bk+2\frac{A}{k} + \frac{B}{k+2}kA+k+2B の形に変形します。1=A(k+2)+Bk1 = A(k+2) + Bk1=A(k+2)+Bk1=(A+B)k+2A1 = (A+B)k + 2A1=(A+B)k+2Aしたがって、A+B=0A+B=0A+B=0 かつ 2A=12A = 12A=1。これから、A=12A = \frac{1}{2}A=21 であり、B=−12B = -\frac{1}{2}B=−21 となります。よって、1k(k+2)=12(1k−1k+2)\frac{1}{k(k+2)} = \frac{1}{2} \left( \frac{1}{k} - \frac{1}{k+2} \right)k(k+2)1=21(k1−k+21)したがって、求める和は∑k=1n1k(k+2)=12∑k=1n(1k−1k+2)\sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{1}{2} \sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+2} \right)∑k=1nk(k+2)1=21∑k=1n(k1−k+21)=12[(11−13)+(12−14)+(13−15)+⋯+(1n−1−1n+1)+(1n−1n+2)]= \frac{1}{2} \left[ \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{2} - \frac{1}{4} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \cdots + \left( \frac{1}{n-1} - \frac{1}{n+1} \right) + \left( \frac{1}{n} - \frac{1}{n+2} \right) \right]=21[(11−31)+(21−41)+(31−51)+⋯+(n−11−n+11)+(n1−n+21)]これはtelescoping sumになっているので、=12(1+12−1n+1−1n+2)= \frac{1}{2} \left( 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)=21(1+21−n+11−n+21)=12(32−n+2+n+1(n+1)(n+2))= \frac{1}{2} \left( \frac{3}{2} - \frac{n+2+n+1}{(n+1)(n+2)} \right)=21(23−(n+1)(n+2)n+2+n+1)=12(32−2n+3(n+1)(n+2))= \frac{1}{2} \left( \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)} \right)=21(23−(n+1)(n+2)2n+3)=12(3(n+1)(n+2)−4n−62(n+1)(n+2))= \frac{1}{2} \left( \frac{3(n+1)(n+2) - 4n - 6}{2(n+1)(n+2)} \right)=21(2(n+1)(n+2)3(n+1)(n+2)−4n−6)=143(n2+3n+2)−4n−6(n+1)(n+2)= \frac{1}{4} \frac{3(n^2 + 3n + 2) - 4n - 6}{(n+1)(n+2)}=41(n+1)(n+2)3(n2+3n+2)−4n−6=143n2+9n+6−4n−6(n+1)(n+2)= \frac{1}{4} \frac{3n^2 + 9n + 6 - 4n - 6}{(n+1)(n+2)}=41(n+1)(n+2)3n2+9n+6−4n−6=143n2+5n(n+1)(n+2)= \frac{1}{4} \frac{3n^2 + 5n}{(n+1)(n+2)}=41(n+1)(n+2)3n2+5n=n(3n+5)4(n+1)(n+2)= \frac{n(3n+5)}{4(n+1)(n+2)}=4(n+1)(n+2)n(3n+5)3. 最終的な答えn(3n+5)4(n+1)(n+2)\frac{n(3n+5)}{4(n+1)(n+2)}4(n+1)(n+2)n(3n+5)