関数 $f(x) = 3x^2$ について、以下の微分係数を求めます。 (1) $f'(1)$ (2) $f'(-2)$ (3) $f'(a)$

解析学微分導関数関数の微分
2025/6/12

1. 問題の内容

関数 f(x)=3x2f(x) = 3x^2 について、以下の微分係数を求めます。
(1) f(1)f'(1)
(2) f(2)f'(-2)
(3) f(a)f'(a)

2. 解き方の手順

まず、f(x)=3x2f(x) = 3x^2 の導関数 f(x)f'(x) を求めます。
xnx^n の微分は nxn1nx^{n-1} であることを利用します。
f(x)=32x21=6xf'(x) = 3 \cdot 2x^{2-1} = 6x
次に、それぞれの値を代入します。
(1) f(1)f'(1) を求めるには、f(x)=6xf'(x) = 6xx=1x = 1 を代入します。
f(1)=6(1)=6f'(1) = 6(1) = 6
(2) f(2)f'(-2) を求めるには、f(x)=6xf'(x) = 6xx=2x = -2 を代入します。
f(2)=6(2)=12f'(-2) = 6(-2) = -12
(3) f(a)f'(a) を求めるには、f(x)=6xf'(x) = 6xx=ax = a を代入します。
f(a)=6af'(a) = 6a

3. 最終的な答え

(1) f(1)=6f'(1) = 6
(2) f(2)=12f'(-2) = -12
(3) f(a)=6af'(a) = 6a

「解析学」の関連問題

与えられた6つの関数を微分する問題です。 (1) $y = \sin(2x) \cos(3x)$ (2) $y = \tan(5x) \cos(7x)$ (3) $y = \frac{\cos(x)}...

微分三角関数積の微分商の微分合成関数の微分
2025/6/12

$y = e^{-2x + 1}$ を微分します。

微分指数関数連鎖律
2025/6/12

はい、承知いたしました。画像の問題を解きます。

微分三角関数合成関数の微分チェーンルール
2025/6/12

与えられた6つの関数をそれぞれ微分せよ。 (1) $y = (x+3)^4$ (2) $y = (-2x+5)^6$ (3) $y = (3x-2)^3$ (4) $y = \frac{-2}{(3x...

微分合成関数の微分関数
2025/6/12

与えられた3つの関数をそれぞれ微分する問題です。 (1) $y = 3x^{-2}$ (2) $y = 2 - \frac{1}{3x^4}$ (3) $y = \frac{5}{x^6} - 4x^...

微分微分公式べき乗
2025/6/12

与えられた4つの関数を微分する問題です。 (1) $y = \frac{2}{x+1}$ (2) $y = \frac{x}{x-1}$ (3) $y = \frac{7x}{x^2+x+1}$ (4...

微分商の微分法合成関数の微分
2025/6/12

与えられた関数を微分する問題です。以下の4つの関数について、それぞれ微分を求めます。 (1) $y = \frac{2}{x+1}$ (2) $y = \frac{x}{x-1}$ (3) $y = ...

微分商の微分関数の微分
2025/6/12

与えられた4つの関数を微分する問題です。 (1) $y = x^2(2x^3 - 1)$ (2) $y = (-x + 1)(x^2 - 3x + 5)$ (3) $y = (3x^4 + 2)(4x...

微分多項式導関数
2025/6/12

与えられた関数について、指定された $x$ の値における微分係数を求める。 (1) $f(x) = 2x - 7$ ($x=3$) (2) $f(x) = 3x^2 - x - 2$ ($x=4$) ...

微分微分係数関数の微分
2025/6/12

与えられた極限を求める問題です。 $$ \lim_{x \to 0} \frac{x - \sin^{-1}x}{x - x\cos x} $$

極限ロピタルの定理微分逆三角関数
2025/6/12