2次方程式 $x^2 - 3(m-1)x + 2m+3 = 0$ が正の解と負の解を持つとき、定数 $m$ の値の範囲を求める問題です。

代数学二次方程式解の符号不等式
2025/6/13

1. 問題の内容

2次方程式 x23(m1)x+2m+3=0x^2 - 3(m-1)x + 2m+3 = 0 が正の解と負の解を持つとき、定数 mm の値の範囲を求める問題です。

2. 解き方の手順

2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 が正の解と負の解を持つための条件は、ac<0ac < 0 であることを利用します。
この問題の場合、a=1a=1, b=3(m1)b = -3(m-1), c=2m+3c = 2m+3 です。したがって、以下の不等式を解く必要があります。
1(2m+3)<01 \cdot (2m+3) < 0
2m+3<02m + 3 < 0
2m<32m < -3
m<32m < -\frac{3}{2}

3. 最終的な答え

m<32m < -\frac{3}{2}

「代数学」の関連問題

公比が2、初項が1の等比数列 $\{a_n\}$ がある。 (1) 和 $\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1...

数列等比数列対数和の公式
2025/6/14

与えられた6つの2次関数について、グラフを描き、頂点の座標と軸の方程式を求める問題です。

二次関数グラフ平方完成頂点
2025/6/14

2次関数 $y=x^2-6x+5$ のグラフを描き、頂点の座標と軸の方程式を求める。

二次関数グラフ平方完成頂点
2025/6/14

$(\sqrt{3} + \sqrt{5})^2$ を展開し、式を完成させる問題です。

展開平方根式の計算
2025/6/14

多項式 $P(x) = x^3 - (a-1)x^2 + (b-5)x + a - 2b + 10$ が与えられており、$P(-1) = 0$ である。ここで、$a, b$ は実数の定数である。 (1...

多項式因数分解虚数解実数解解の公式判別式
2025/6/14

$(\sqrt{3} + \sqrt{5})^2$ を展開し、空欄を埋める問題です。

展開平方根計算
2025/6/14

$a, b$ を正の実数とする。直線 $ax + by = 1$ と曲線 $y = -\frac{1}{x}$ の2つの交点のうち、$y$ 座標が正のものを $P$、負のものを $Q$ とする。また、...

軌跡二次方程式解と係数の関係分数関数線分の長さ
2025/6/14

与えられた不等式を解く問題です。問題は全部で6問あります。

不等式一次不等式
2025/6/14

不等式 $x^2 - (a^2 - 2a + 1)x + a^2 - 2a < 0$ を満たす整数 $x$ が存在しないような定数 $a$ の値の範囲を求める。

不等式二次不等式因数分解整数解
2025/6/14

不等式 $x^2 - (a^2 - 2a + 1)x + a^2 - 2a < 0$ を満たす整数 $x$ が存在しないような定数 $a$ の値の範囲を求める問題です。

不等式二次不等式解の存在範囲因数分解
2025/6/14