与えられた関数 $f(x) = \frac{2\cos^2x + 6\sin^2x}{\cos^4x}$ を微分せよ。解析学微分三角関数関数の微分2025/6/131. 問題の内容与えられた関数 f(x)=2cos2x+6sin2xcos4xf(x) = \frac{2\cos^2x + 6\sin^2x}{\cos^4x}f(x)=cos4x2cos2x+6sin2x を微分せよ。2. 解き方の手順まず、与えられた関数を整理します。f(x)=2cos2x+6sin2xcos4x=2cos2x+2sin2x+4sin2xcos4x=2(cos2x+sin2x)+4sin2xcos4xf(x) = \frac{2\cos^2x + 6\sin^2x}{\cos^4x} = \frac{2\cos^2x + 2\sin^2x + 4\sin^2x}{\cos^4x} = \frac{2(\cos^2x + \sin^2x) + 4\sin^2x}{\cos^4x}f(x)=cos4x2cos2x+6sin2x=cos4x2cos2x+2sin2x+4sin2x=cos4x2(cos2x+sin2x)+4sin2x三角関数の恒等式 cos2x+sin2x=1\cos^2x + \sin^2x = 1cos2x+sin2x=1 を用いると、f(x)=2+4sin2xcos4xf(x) = \frac{2 + 4\sin^2x}{\cos^4x}f(x)=cos4x2+4sin2xf(x)=2cos4x+4sin2xcos4x=2sec4x+4sin2xcos2x⋅1cos2x=2sec4x+4tan2xsec2xf(x) = \frac{2}{\cos^4x} + \frac{4\sin^2x}{\cos^4x} = 2\sec^4x + 4\frac{\sin^2x}{\cos^2x}\cdot\frac{1}{\cos^2x} = 2\sec^4x + 4\tan^2x\sec^2xf(x)=cos4x2+cos4x4sin2x=2sec4x+4cos2xsin2x⋅cos2x1=2sec4x+4tan2xsec2xここで、f(x)f(x)f(x) を微分します。ddx(secx)=secxtanx\frac{d}{dx}(\sec x) = \sec x \tan xdxd(secx)=secxtanxddx(tanx)=sec2x\frac{d}{dx}(\tan x) = \sec^2 xdxd(tanx)=sec2xddx(2sec4x)=2⋅4sec3x⋅(secxtanx)=8sec4xtanx\frac{d}{dx}(2\sec^4x) = 2\cdot4\sec^3x\cdot(\sec x \tan x) = 8\sec^4x \tan xdxd(2sec4x)=2⋅4sec3x⋅(secxtanx)=8sec4xtanxddx(4tan2xsec2x)=4(2tanxsec2x⋅sec2x+tan2x⋅2secxsecxtanx)=8tanxsec4x+8tan3xsec2x\frac{d}{dx}(4\tan^2x\sec^2x) = 4(2\tan x \sec^2x \cdot \sec^2x + \tan^2x \cdot 2\sec x \sec x \tan x) = 8\tan x \sec^4x + 8 \tan^3x \sec^2xdxd(4tan2xsec2x)=4(2tanxsec2x⋅sec2x+tan2x⋅2secxsecxtanx)=8tanxsec4x+8tan3xsec2xしたがって、f′(x)=8sec4xtanx+8tanxsec4x+8tan3xsec2x=16sec4xtanx+8tan3xsec2xf'(x) = 8\sec^4x \tan x + 8\tan x \sec^4x + 8\tan^3x \sec^2x = 16\sec^4x \tan x + 8\tan^3x \sec^2xf′(x)=8sec4xtanx+8tanxsec4x+8tan3xsec2x=16sec4xtanx+8tan3xsec2xf′(x)=8sec2xtanx(2sec2x+tan2x)=8sec2xtanx(2(1+tan2x)+tan2x)=8sec2xtanx(2+3tan2x)f'(x) = 8\sec^2x\tan x(2\sec^2x + \tan^2x) = 8\sec^2x\tan x(2(1 + \tan^2x) + \tan^2x) = 8\sec^2x\tan x(2 + 3\tan^2x)f′(x)=8sec2xtanx(2sec2x+tan2x)=8sec2xtanx(2(1+tan2x)+tan2x)=8sec2xtanx(2+3tan2x)3. 最終的な答えf′(x)=8sec2xtanx(2+3tan2x)f'(x) = 8\sec^2x \tan x(2 + 3\tan^2x)f′(x)=8sec2xtanx(2+3tan2x)