次の和 $S$ を求めよ。 $S = 1 \cdot 1 + 4 \cdot 2 + 7 \cdot 2^2 + \dots + (3n-2) \cdot 2^{n-1}$代数学数列級数等比数列和2025/6/141. 問題の内容次の和 SSS を求めよ。S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−1S = 1 \cdot 1 + 4 \cdot 2 + 7 \cdot 2^2 + \dots + (3n-2) \cdot 2^{n-1}S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−12. 解き方の手順S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−1S = 1 \cdot 1 + 4 \cdot 2 + 7 \cdot 2^2 + \dots + (3n-2) \cdot 2^{n-1}S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−1 ・・・ (1)(1)式の両辺に2をかけると、2S=1⋅2+4⋅22+7⋅23+⋯+(3n−5)⋅2n−1+(3n−2)⋅2n2S = 1 \cdot 2 + 4 \cdot 2^2 + 7 \cdot 2^3 + \dots + (3n-5) \cdot 2^{n-1} + (3n-2) \cdot 2^n2S=1⋅2+4⋅22+7⋅23+⋯+(3n−5)⋅2n−1+(3n−2)⋅2n ・・・ (2)(1)式から(2)式を引くと、S−2S=1+(4−1)⋅2+(7−4)⋅22+⋯+(3n−2−(3n−5))⋅2n−1−(3n−2)⋅2nS - 2S = 1 + (4-1) \cdot 2 + (7-4) \cdot 2^2 + \dots + (3n-2 - (3n-5)) \cdot 2^{n-1} - (3n-2) \cdot 2^nS−2S=1+(4−1)⋅2+(7−4)⋅22+⋯+(3n−2−(3n−5))⋅2n−1−(3n−2)⋅2n−S=1+3⋅2+3⋅22+⋯+3⋅2n−1−(3n−2)⋅2n-S = 1 + 3 \cdot 2 + 3 \cdot 2^2 + \dots + 3 \cdot 2^{n-1} - (3n-2) \cdot 2^n−S=1+3⋅2+3⋅22+⋯+3⋅2n−1−(3n−2)⋅2n−S=1+3(2+22+⋯+2n−1)−(3n−2)⋅2n-S = 1 + 3(2 + 2^2 + \dots + 2^{n-1}) - (3n-2) \cdot 2^n−S=1+3(2+22+⋯+2n−1)−(3n−2)⋅2nここで、2+22+⋯+2n−12 + 2^2 + \dots + 2^{n-1}2+22+⋯+2n−1は初項2, 公比2, 項数 n−1n-1n−1 の等比数列の和なので、2+22+⋯+2n−1=2(2n−1−1)2−1=2(2n−1−1)=2n−22 + 2^2 + \dots + 2^{n-1} = \frac{2(2^{n-1}-1)}{2-1} = 2(2^{n-1}-1) = 2^n - 22+22+⋯+2n−1=2−12(2n−1−1)=2(2n−1−1)=2n−2したがって、−S=1+3(2n−2)−(3n−2)⋅2n-S = 1 + 3(2^n - 2) - (3n-2) \cdot 2^n−S=1+3(2n−2)−(3n−2)⋅2n−S=1+3⋅2n−6−(3n−2)⋅2n-S = 1 + 3 \cdot 2^n - 6 - (3n-2) \cdot 2^n−S=1+3⋅2n−6−(3n−2)⋅2n−S=3⋅2n−3n⋅2n+2⋅2n−5-S = 3 \cdot 2^n - 3n \cdot 2^n + 2 \cdot 2^n - 5−S=3⋅2n−3n⋅2n+2⋅2n−5−S=(5−3n)⋅2n−5-S = (5-3n) \cdot 2^n - 5−S=(5−3n)⋅2n−5S=(3n−5)⋅2n+5S = (3n-5) \cdot 2^n + 5S=(3n−5)⋅2n+53. 最終的な答えS=(3n−5)⋅2n+5S = (3n-5) \cdot 2^n + 5S=(3n−5)⋅2n+5