2次方程式 $x^2 - 4x - 2 = 0$ の2つの解を $a, b$ ($a < b$) とする。 (1) $a, b$ の値をそれぞれ求めよ。 (2) $a^2 + b^2, \frac{a}{b} + \frac{b}{a}$ の値をそれぞれ求めよ。 (3) 不等式 $|x - \frac{a}{b}| \le \frac{|b|}{a}$ を解け。また、不等式 $k \le x$ を満たす整数 $x$ がちょうど2個存在するような定数 $k$ の値の範囲を求めよ。

代数学二次方程式解の公式絶対値不等式
2025/6/15

1. 問題の内容

2次方程式 x24x2=0x^2 - 4x - 2 = 0 の2つの解を a,ba, b (a<ba < b) とする。
(1) a,ba, b の値をそれぞれ求めよ。
(2) a2+b2,ab+baa^2 + b^2, \frac{a}{b} + \frac{b}{a} の値をそれぞれ求めよ。
(3) 不等式 xabba|x - \frac{a}{b}| \le \frac{|b|}{a} を解け。また、不等式 kxk \le x を満たす整数 xx がちょうど2個存在するような定数 kk の値の範囲を求めよ。

2. 解き方の手順

(1) 2次方程式 x24x2=0x^2 - 4x - 2 = 0 を解く。解の公式を用いると、
x=(4)±(4)24(1)(2)2(1)=4±16+82=4±242=4±262=2±6x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-2)}}{2(1)} = \frac{4 \pm \sqrt{16+8}}{2} = \frac{4 \pm \sqrt{24}}{2} = \frac{4 \pm 2\sqrt{6}}{2} = 2 \pm \sqrt{6}
a<ba < b より、 a=26,b=2+6a = 2 - \sqrt{6}, b = 2 + \sqrt{6}
(2) a2+b2a^2 + b^2 を求める。
a2+b2=(26)2+(2+6)2=(446+6)+(4+46+6)=1046+10+46=20a^2 + b^2 = (2 - \sqrt{6})^2 + (2 + \sqrt{6})^2 = (4 - 4\sqrt{6} + 6) + (4 + 4\sqrt{6} + 6) = 10 - 4\sqrt{6} + 10 + 4\sqrt{6} = 20
次に ab+ba\frac{a}{b} + \frac{b}{a} を求める。
ab+ba=a2+b2ab=20(26)(2+6)=2046=202=10 \frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = \frac{20}{(2 - \sqrt{6})(2 + \sqrt{6})} = \frac{20}{4 - 6} = \frac{20}{-2} = -10
(3) 不等式 xabba|x - \frac{a}{b}| \le \frac{|b|}{a} を解く。
まず ab=262+6=(26)2(2+6)(26)=446+646=10462=5+26\frac{a}{b} = \frac{2 - \sqrt{6}}{2 + \sqrt{6}} = \frac{(2 - \sqrt{6})^2}{(2 + \sqrt{6})(2 - \sqrt{6})} = \frac{4 - 4\sqrt{6} + 6}{4 - 6} = \frac{10 - 4\sqrt{6}}{-2} = -5 + 2\sqrt{6}
次に ba=2+6(62)=1\frac{|b|}{a} = \frac{2 + \sqrt{6}}{-( \sqrt{6} - 2)} = -1
したがって、不等式は x(5+26)1|x - (-5 + 2\sqrt{6})| \le |-1| すなわち x+5261|x + 5 - 2\sqrt{6}| \le 1 となる。
1x+5261-1 \le x + 5 - 2\sqrt{6} \le 1 より、 6+26x4+26-6 + 2\sqrt{6} \le x \le -4 + 2\sqrt{6}
ここで、62.45\sqrt{6} \approx 2.45 なので、 264.92\sqrt{6} \approx 4.9
6+266+4.9=1.1-6 + 2\sqrt{6} \approx -6 + 4.9 = -1.1
4+264+4.9=0.9-4 + 2\sqrt{6} \approx -4 + 4.9 = 0.9
したがって、1.1x0.9-1.1 \le x \le 0.9 となり、これを満たす整数は 1,0-1, 0 である。
不等式 kxk \le x を満たす整数 xx がちょうど2個存在する必要があるので、kk が満たすべき条件は 2<k1-2 < k \le -1 である。

3. 最終的な答え

(1) a=26,b=2+6a = 2 - \sqrt{6}, b = 2 + \sqrt{6}
(2) a2+b2=20,ab+ba=10a^2 + b^2 = 20, \frac{a}{b} + \frac{b}{a} = -10
(3) 6+26x4+26-6 + 2\sqrt{6} \le x \le -4 + 2\sqrt{6}, 2<k1-2 < k \le -1

「代数学」の関連問題

$a < b$ のとき、以下の不等式の空欄に適切な不等号(> または <)を入れよ。 (1) $a+4 \square b+4$ (2) $a-6 \square b-6$ (3) $11a \squ...

不等式一次不等式不等号の性質
2025/6/15

問題は、与えられた $a$ と $b$ の値に対して、指定された式における不等号(> または <)を決定することです。

不等式大小比較一次式
2025/6/15

与えられた4つの2次関数について、グラフを描き、軸と頂点を求める問題です。 (1) $y = (x+3)^2$ (2) $y = 2(x-1)^2$ (3) $y = -(x-2)^2$ (4) $y...

二次関数グラフ頂点
2025/6/15

与えられた4つの2次関数について、グラフの概形を考え、軸と頂点を求める問題です。 (1) $y = (x+3)^2$ (2) $y = 2(x-1)^2$ (3) $y = -(x-2)^2$ (4)...

二次関数グラフ頂点
2025/6/15

与えられた4つの二次関数について、それぞれのグラフの概形を描き、軸と頂点の座標を求める。 (1) $y = x^2 - 4$ (2) $y = 2x^2 + 1$ (3) $y = -x^2 + 3$...

二次関数グラフ放物線頂点
2025/6/15

関数 $y = -3x + 5$ の $-2 \le x \le 2$ の範囲におけるグラフを描き、最大値と最小値を求める問題です。

一次関数グラフ最大値最小値
2025/6/15

関数 $f(x)$ が与えられたとき、$f(2)$, $f(0)$, $f(-3)$ の値をそれぞれ求めます。与えられた関数は以下の2つです。 (1) $f(x) = 3x - 5$ (2) $f(x...

関数関数の値代入
2025/6/15

$0 \leq x \leq 8$ の範囲のすべての $x$ の値に対して、不等式 $x^2 - 2mx + m + 6 > 0$ が成り立つような定数 $m$ の値の範囲を求めます。

二次不等式二次関数平方完成最大・最小
2025/6/15

2次関数 $y = -x^2 + 4x + a^2 + a$ について、$1 \le x \le 4$ の範囲で $y$ の値が常に正であるように、定数 $a$ の値の範囲を求めよ。

二次関数2次不等式最大最小放物線
2025/6/15

与えられた日本語の文章を読み、それぞれの文章が表す数量の関係を不等式で表します。

不等式一次不等式文章題
2025/6/15