はい、承知しました。問題の導関数を求めます。
1. 問題の内容
与えられた12個の関数について、それぞれの導関数を求める問題です。
2. 解き方の手順
(1) y=(x2+1)5(x3−2)3
積の微分公式: (uv)′=u′v+uv′を使う。
u=(x2+1)5とすると、u′=5(x2+1)4(2x)=10x(x2+1)4
v=(x3−2)3とすると、v′=3(x3−2)2(3x2)=9x2(x3−2)2
y′=u′v+uv′=10x(x2+1)4(x3−2)3+(x2+1)5⋅9x2(x3−2)2
=x(x2+1)4(x3−2)2[10(x3−2)+9x(x2+1)]=x(x2+1)4(x3−2)2[19x3+9x−20]
(2) y=log(logx)
合成関数の微分: y′=logx1⋅x1=xlogx1
(3) y=2x
y′=2xlog2
(4) y=x3(x2+1)3/2
積の微分公式: y′=3x2(x2+1)3/2+x3⋅23(x2+1)1/2(2x)=3x2(x2+1)3/2+3x4(x2+1)1/2
=3x2(x2+1)1/2[(x2+1)+x2]=3x2(x2+1)1/2(2x2+1)
(5) y=exx
u=xxとすると、logu=xlogx
uu′=logx+x⋅x1=logx+1
u′=xx(logx+1)
y′=exx⋅xx(logx+1)
(6) y=(sinx)cosx
logy=cosxlog(sinx)
yy′=−sinxlog(sinx)+cosx⋅sinxcosx=−sinxlog(sinx)+sinxcos2x
y′=(sinx)cosx[−sinxlog(sinx)+sinxcos2x]
(7) y=arctan(1+x21−x2)
y′=1+(1+x21−x2)21⋅(1+x2)2(−2x)(1+x2)−(1−x2)(2x)=(1+x2)2+(1−x2)2(1+x2)2⋅(1+x2)2−2x−2x3−2x+2x3
=1+2x2+x4+1−2x2+x41⋅(−4x)=2+2x4−4x=1+x4−2x
(8) y=1+2logx
y′=21+2logx1⋅x2=x1+2logx1
(9) y=arcsin(1+x2x)
y′=1−(1+x2x)21⋅1+x21+x2−x⋅21+x21⋅2x=1+x2−x21+x2⋅(1+x2)1+x21+x2−x2=11+x2⋅(1+x2)1+x21=1+x21
(10) y=2arccos2x+1
y′=2⋅1−2x+1−1⋅21(2x+1)−1/2=1−2x+12x+1−1=22−x−12x+1−1=21(1−x)(1+x)−1=1−x2−2
(11) y=(x−3)(x−4)(x−1)(x−2)
logy=21[log(x−1)+log(x−2)−log(x−3)−log(x−4)]
yy′=21[x−11+x−21−x−31−x−41]
y′=21(x−3)(x−4)(x−1)(x−2)[x−11+x−21−x−31−x−41]
y′=21(x−3)(x−4)(x−1)(x−2)[(x−1)(x−2)(x−2)+(x−1)−(x−3)(x−4)(x−4)+(x−3)]=21(x−3)(x−4)(x−1)(x−2)[(x−1)(x−2)2x−3−(x−3)(x−4)2x−7]
y′=21(x−3)(x−4)(x−1)(x−2)(x−1)(x−2)(x−3)(x−4)(2x−3)(x−3)(x−4)−(2x−7)(x−1)(x−2)
y′=21(x−3)(x−4)(x−1)(x−2)(x−1)(x−2)(x−3)(x−4)(2x−3)(x2−7x+12)−(2x−7)(x2−3x+2)=21(x−3)(x−4)(x−1)(x−2)(x−1)(x−2)(x−3)(x−4)(2x3−14x2+24x−3x2+21x−36)−(2x3−6x2+4x−7x2+21x−14)
y′=21(x−3)(x−4)(x−1)(x−2)(x−1)(x−2)(x−3)(x−4)2x3−17x2+45x−36−(2x3−13x2+25x−14)=21(x−3)(x−4)(x−1)(x−2)(x−1)(x−2)(x−3)(x−4)−4x2+20x−22
y′=(x−1)(x−2)(x−3)(x−4)3−2x2+10x−11
(12) y=xa2−x2+a2arcsinax
y′=a2−x2+x⋅2a2−x2−2x+a2⋅1−a2x21⋅a1=a2−x2−a2−x2x2+aa2a2−x2a2=a2−x2−a2−x2x2+a2−x2a2
y′=a2−x2a2−x2−x2+a2=a2−x22(a2−x2)=a2−x22(a2−x2)=2a2−x2
3. 最終的な答え
(1) y′=x(x2+1)4(x3−2)2[19x3+9x−20]
(2) y′=xlogx1
(3) y′=2xlog2
(4) y′=3x2(x2+1)1/2(2x2+1)
(5) y′=exx⋅xx(logx+1)
(6) y′=(sinx)cosx[−sinxlog(sinx)+sinxcos2x]
(7) y′=1+x4−2x
(8) y′=x1+2logx1
(9) y′=1+x21
(10) y′=1−x2−2
(11) y′=(x−1)(x−2)(x−3)3(x−4)3−2x2+10x−11
(12) y′=2a2−x2