食品Aと食品Bがあり、それぞれ100g中に含まれる塩分の量が、食品Aは1.5g、食品Bは2gである。食品Aと食品Bを合わせて300gにしたとき、塩分の合計が5gになる。このとき、食品Aと食品Bはそれぞれ何gか求める。

代数学連立方程式文章題一次方程式
2025/6/17

1. 問題の内容

食品Aと食品Bがあり、それぞれ100g中に含まれる塩分の量が、食品Aは1.5g、食品Bは2gである。食品Aと食品Bを合わせて300gにしたとき、塩分の合計が5gになる。このとき、食品Aと食品Bはそれぞれ何gか求める。

2. 解き方の手順

食品Aの量をxx (g)、食品Bの量をyy (g)とする。
全体の重さに関する式は、
x+y=300x + y = 300
塩分に関する式は、
1.5100x+2100y=5\frac{1.5}{100}x + \frac{2}{100}y = 5
連立方程式を解く。
まず、2番目の式を100倍する。
1.5x+2y=5001.5x + 2y = 500
1番目の式からy=300xy=300-xとなるので、これを2番目の式に代入する。
1.5x+2(300x)=5001.5x + 2(300-x) = 500
1.5x+6002x=5001.5x + 600 - 2x = 500
0.5x=100-0.5x = -100
x=200x = 200
y=300x=300200=100y = 300 - x = 300 - 200 = 100

3. 最終的な答え

食品A: 200g
食品B: 100g

「代数学」の関連問題

問題は、与えられた2つの多項式について、足し算と引き算を行うものです。 (1) $3a+2b$ と $a-4b$ (2) $x-4y$ と $-2x+3y$ それぞれについて、足し算の結果と、左の式か...

多項式の加減同類項
2025/6/17

問題は、与えられた二つの多項式について、足し算と引き算を行うことです。具体的には、(1) $3a+2b$ と $a-4b$、(2) $x-4y$ と $-2x+3y$ のそれぞれについて、足し算(左の...

多項式加減算文字式
2025/6/17

問題は、与えられた2つの多項式に対して、足し算と引き算を行うものです。 (1) $3a+2b$ と $a-4b$ (2) $x-4y$ と $-2x+3y$ それぞれの組について、和と差を計算します。

多項式加法減法同類項
2025/6/17

与えられた画像には複数の数学の問題が含まれています。これらの問題は主に、式の計算、単項式の識別、式の次数の特定、等式を変形することなどに関するものです。

単項式多項式式の計算次数の決定等式の変形
2025/6/17

与えられた式 $m = 2(a - b) + c$ を $b$ について解きます。つまり、$b = $ の形に変形します。

式の変形一次方程式解の公式
2025/6/17

与えられた6つの数式の同類項をまとめる問題です。

同類項式の整理多項式
2025/6/17

与えられた数学の問題を解く。問題は、単項式の選択、式の項の特定、式の次数の特定、式の計算、等式を特定の変数について解くなど、多岐にわたる。

単項式式の計算式の次数等式文字式の計算代入方程式
2025/6/17

2次方程式 $x^2 - 2(k+2)x + 5k + 6 = 0$ が、-1より大きい2つの解(重解を含む)を持つような、実数 $k$ の値の範囲を求める問題です。

二次方程式解の範囲判別式不等式
2025/6/17

画像の問題は、多項式の次数を求める問題、同類項をまとめる問題、2つの多項式の和と差を求める問題です。今回は3番の(1)の問題、「3a+2b, a-4b」の和と差を求めます。

多項式同類項
2025/6/17

2次関数 $y = 2x^2 - 5x + 3$ のグラフを、$x$軸方向に $-2$, $y$軸方向に $1$ だけ平行移動したときの放物線の方程式を求める。

二次関数平行移動放物線グラフ
2025/6/17