関数 $y = \frac{x-1}{x^2+1}$ の最大値と最小値を求める。解析学関数の最大最小微分判別式2025/6/191. 問題の内容関数 y=x−1x2+1y = \frac{x-1}{x^2+1}y=x2+1x−1 の最大値と最小値を求める。2. 解き方の手順関数 y=x−1x2+1y = \frac{x-1}{x^2+1}y=x2+1x−1 の最大値、最小値を求めるために、まずこの式を変形して、xxx の二次方程式の判別式を考える。まず、y=x−1x2+1y = \frac{x-1}{x^2+1}y=x2+1x−1 より、y(x2+1)=x−1y(x^2+1) = x-1y(x2+1)=x−1yx2+y=x−1yx^2 + y = x-1yx2+y=x−1yx2−x+y+1=0yx^2 - x + y + 1 = 0yx2−x+y+1=0xxx の二次方程式 yx2−x+y+1=0yx^2 - x + y + 1 = 0yx2−x+y+1=0 が実数解を持つための条件は、判別式 D≥0D \geq 0D≥0 である。D=(−1)2−4(y)(y+1)=1−4y2−4y≥0D = (-1)^2 - 4(y)(y+1) = 1 - 4y^2 - 4y \geq 0D=(−1)2−4(y)(y+1)=1−4y2−4y≥04y2+4y−1≤04y^2 + 4y - 1 \leq 04y2+4y−1≤04y2+4y−1=04y^2 + 4y - 1 = 04y2+4y−1=0 を解くと、y=−4±42−4(4)(−1)2(4)=−4±16+168=−4±328=−4±428=−1±22y = \frac{-4 \pm \sqrt{4^2 - 4(4)(-1)}}{2(4)} = \frac{-4 \pm \sqrt{16+16}}{8} = \frac{-4 \pm \sqrt{32}}{8} = \frac{-4 \pm 4\sqrt{2}}{8} = \frac{-1 \pm \sqrt{2}}{2}y=2(4)−4±42−4(4)(−1)=8−4±16+16=8−4±32=8−4±42=2−1±2したがって、4y2+4y−1≤04y^2 + 4y - 1 \leq 04y2+4y−1≤0 を満たす yyy の範囲は、−1−22≤y≤−1+22\frac{-1 - \sqrt{2}}{2} \leq y \leq \frac{-1 + \sqrt{2}}{2}2−1−2≤y≤2−1+2yyy の最大値は −1+22\frac{-1 + \sqrt{2}}{2}2−1+2 であり、yx2−x+y+1=0yx^2 - x + y + 1 = 0yx2−x+y+1=0 に代入すると、−1+22x2−x+−1+22+1=0\frac{-1 + \sqrt{2}}{2}x^2 - x + \frac{-1 + \sqrt{2}}{2} + 1 = 02−1+2x2−x+2−1+2+1=0−1+22x2−x+1+22=0\frac{-1 + \sqrt{2}}{2}x^2 - x + \frac{1 + \sqrt{2}}{2} = 02−1+2x2−x+21+2=0(−1+2)x2−2x+(1+2)=0(-1 + \sqrt{2})x^2 - 2x + (1 + \sqrt{2}) = 0(−1+2)x2−2x+(1+2)=0x=2±4−4(−1+2)(1+2)2(−1+2)=22(−1+2)=1−1+2=1+2(2−1)(2+1)=1+2x = \frac{2 \pm \sqrt{4 - 4(-1 + \sqrt{2})(1 + \sqrt{2})}}{2(-1 + \sqrt{2})} = \frac{2}{2(-1 + \sqrt{2})} = \frac{1}{-1 + \sqrt{2}} = \frac{1 + \sqrt{2}}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = 1 + \sqrt{2}x=2(−1+2)2±4−4(−1+2)(1+2)=2(−1+2)2=−1+21=(2−1)(2+1)1+2=1+2yyy の最小値は −1−22\frac{-1 - \sqrt{2}}{2}2−1−2 であり、yx2−x+y+1=0yx^2 - x + y + 1 = 0yx2−x+y+1=0 に代入すると、−1−22x2−x+−1−22+1=0\frac{-1 - \sqrt{2}}{2}x^2 - x + \frac{-1 - \sqrt{2}}{2} + 1 = 02−1−2x2−x+2−1−2+1=0−1−22x2−x+1−22=0\frac{-1 - \sqrt{2}}{2}x^2 - x + \frac{1 - \sqrt{2}}{2} = 02−1−2x2−x+21−2=0(−1−2)x2−2x+(1−2)=0(-1 - \sqrt{2})x^2 - 2x + (1 - \sqrt{2}) = 0(−1−2)x2−2x+(1−2)=0x=2±4−4(−1−2)(1−2)2(−1−2)=22(−1−2)=1−1−2=1−2(−1−2)(1−2)=1−21=1−2x = \frac{2 \pm \sqrt{4 - 4(-1 - \sqrt{2})(1 - \sqrt{2})}}{2(-1 - \sqrt{2})} = \frac{2}{2(-1 - \sqrt{2})} = \frac{1}{-1 - \sqrt{2}} = \frac{1 - \sqrt{2}}{(-1 - \sqrt{2})(1 - \sqrt{2})} = \frac{1 - \sqrt{2}}{1} = 1 - \sqrt{2}x=2(−1−2)2±4−4(−1−2)(1−2)=2(−1−2)2=−1−21=(−1−2)(1−2)1−2=11−2=1−23. 最終的な答え最大値: y=−1+22y = \frac{-1 + \sqrt{2}}{2}y=2−1+2最小値: y=−1−22y = \frac{-1 - \sqrt{2}}{2}y=2−1−2