点 $(0, 2)$ から曲線 $y = x^3 - x^2 - 1$ に引いた接線の方程式をすべて求める。解析学接線微分曲線方程式2025/6/191. 問題の内容点 (0,2)(0, 2)(0,2) から曲線 y=x3−x2−1y = x^3 - x^2 - 1y=x3−x2−1 に引いた接線の方程式をすべて求める。2. 解き方の手順接点を (t,t3−t2−1)(t, t^3 - t^2 - 1)(t,t3−t2−1) とおく。y=x3−x2−1y = x^3 - x^2 - 1y=x3−x2−1 を微分すると y′=3x2−2xy' = 3x^2 - 2xy′=3x2−2x となる。点 (t,t3−t2−1)(t, t^3 - t^2 - 1)(t,t3−t2−1) における接線の方程式はy−(t3−t2−1)=(3t2−2t)(x−t)y - (t^3 - t^2 - 1) = (3t^2 - 2t)(x - t)y−(t3−t2−1)=(3t2−2t)(x−t)y=(3t2−2t)x−3t3+2t2+t3−t2−1y = (3t^2 - 2t)x - 3t^3 + 2t^2 + t^3 - t^2 - 1y=(3t2−2t)x−3t3+2t2+t3−t2−1y=(3t2−2t)x−2t3+t2−1y = (3t^2 - 2t)x - 2t^3 + t^2 - 1y=(3t2−2t)x−2t3+t2−1この接線が点 (0,2)(0, 2)(0,2) を通るので2=(3t2−2t)(0)−2t3+t2−12 = (3t^2 - 2t)(0) - 2t^3 + t^2 - 12=(3t2−2t)(0)−2t3+t2−12=−2t3+t2−12 = -2t^3 + t^2 - 12=−2t3+t2−12t3−t2+3=02t^3 - t^2 + 3 = 02t3−t2+3=0(t+1)(2t2−3t+3)=0(t+1)(2t^2 - 3t + 3) = 0(t+1)(2t2−3t+3)=02t2−3t+3=02t^2 - 3t + 3 = 02t2−3t+3=0 の判別式は D=(−3)2−4(2)(3)=9−24=−15<0D = (-3)^2 - 4(2)(3) = 9 - 24 = -15 < 0D=(−3)2−4(2)(3)=9−24=−15<0 より実数解を持たない。したがって t=−1t = -1t=−1。接点は (−1,(−1)3−(−1)2−1)=(−1,−1−1−1)=(−1,−3)(-1, (-1)^3 - (-1)^2 - 1) = (-1, -1 - 1 - 1) = (-1, -3)(−1,(−1)3−(−1)2−1)=(−1,−1−1−1)=(−1,−3)接線の傾きは 3(−1)2−2(−1)=3+2=53(-1)^2 - 2(-1) = 3 + 2 = 53(−1)2−2(−1)=3+2=5接線の方程式は y−(−3)=5(x−(−1))y - (-3) = 5(x - (-1))y−(−3)=5(x−(−1))y+3=5(x+1)y + 3 = 5(x + 1)y+3=5(x+1)y=5x+5−3y = 5x + 5 - 3y=5x+5−3y=5x+2y = 5x + 2y=5x+23. 最終的な答えy=5x+2y = 5x + 2y=5x+2