$x = 78$、$y = 38$ のとき、$x^2 - 2xy + y^2$ の値を求めます。

代数学因数分解式の計算代入
2025/6/20

1. 問題の内容

x=78x = 78y=38y = 38 のとき、x22xy+y2x^2 - 2xy + y^2 の値を求めます。

2. 解き方の手順

まず、x22xy+y2x^2 - 2xy + y^2 を因数分解します。これは (xy)2(x-y)^2 となります。
次に、xxyy の値を代入します。
x=78x = 78y=38y = 38 なので、(7838)2(78 - 38)^2 を計算します。
7838=4078 - 38 = 40 なので、40240^2 を計算します。
402=40×40=160040^2 = 40 \times 40 = 1600

3. 最終的な答え

1600

「代数学」の関連問題

問7の空欄を埋める問題です。$x$ の関数において、$x$ のとりうる値の範囲をその関数の何というか答える問題です。

関数定義域
2025/6/20

与えられた式 $2x^2 - xy - y^2 + 5x + y + 2$ を因数分解せよ。

因数分解多項式二次式
2025/6/20

2次関数 $y = x^2 + 6x + 7$ を平方完成させ、最小値を求め、最小値をとるときの $x$ の値を求める問題です。

二次関数平方完成最小値頂点
2025/6/20

2次関数 $y = x^2 + 6x + 7$ を平方完成し、グラフの頂点の座標を求め、最小値を求める問題です。

二次関数平方完成グラフ頂点最小値
2025/6/20

与えられた二次関数 $y = -(x-2)^2 + 6$ について、yが最大値または最小値をとるときのxの値と、その最大値または最小値、および存在しない値を求める問題です。

二次関数最大値最小値頂点放物線
2025/6/20

不等式 $a^2 - a + b^2 - b + \frac{1}{2} \geq 0$ が成り立つことを証明し、等号が成り立つ条件を求める。

不等式平方完成証明等号条件
2025/6/20

$a, b$ は実数、$i$ は虚数単位とする。3次方程式 $x^3 + ax^2 + bx + 12 = 0$ が $-1 + \sqrt{3}i$ を解にもつとき、残りの解と $a, b$ の値を...

三次方程式複素数解の公式因数定理
2025/6/20

2次関数 $y = -(x+2)^2 + 5$ のグラフが与えられており、$y$ が最大値をとる時の $x$ の値、その最大値、そして最小値を求める問題です。

二次関数最大値最小値グラフ頂点
2025/6/20

不等式 $a^2 - a + b^2 - b + \frac{1}{2} \geq 0$ が成り立つことを証明し、等号が成り立つ条件を求める問題です。

不等式平方完成証明
2025/6/20

$x$ の3次方程式 $x^3 - 3x^2 + ax - b = 0$ が $1-3i$ を解に持つとき、実数の定数 $a, b$ の値と他の解 $x$ を求めよ。ただし、$i$ は虚数単位である。

三次方程式複素数解と係数の関係
2025/6/20