$x+y=1$、$x^3+y^3=7$ のとき、$xy$、$x^2+y^2$、$x^6+y^6$ の値を求めよ。代数学式の計算因数分解連立方程式2025/6/211. 問題の内容x+y=1x+y=1x+y=1、x3+y3=7x^3+y^3=7x3+y3=7 のとき、xyxyxy、x2+y2x^2+y^2x2+y2、x6+y6x^6+y^6x6+y6 の値を求めよ。2. 解き方の手順まず、x3+y3x^3+y^3x3+y3 を (x+y)(x+y)(x+y) と xyxyxy で表すことを考えます。x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)x^3+y^3 = (x+y)(x^2-xy+y^2) = (x+y)((x+y)^2 - 3xy)x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)与えられた条件 x+y=1x+y=1x+y=1、x3+y3=7x^3+y^3=7x3+y3=7 を代入すると、7=1(12−3xy)7 = 1(1^2 - 3xy)7=1(12−3xy)7=1−3xy7 = 1 - 3xy7=1−3xy3xy=−63xy = -63xy=−6xy=−2xy = -2xy=−2次に、x2+y2x^2+y^2x2+y2 を求めます。x2+y2=(x+y)2−2xyx^2+y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xyx+y=1x+y=1x+y=1、xy=−2xy=-2xy=−2 を代入すると、x2+y2=12−2(−2)=1+4=5x^2+y^2 = 1^2 - 2(-2) = 1 + 4 = 5x2+y2=12−2(−2)=1+4=5最後に、x6+y6x^6+y^6x6+y6 を求めます。x6+y6=(x3)2+(y3)2=(x3+y3)2−2x3y3x^6+y^6 = (x^3)^2 + (y^3)^2 = (x^3+y^3)^2 - 2x^3y^3x6+y6=(x3)2+(y3)2=(x3+y3)2−2x3y3x3+y3=7x^3+y^3=7x3+y3=7、xy=−2xy=-2xy=−2 を代入すると、x6+y6=72−2(−2)3=49−2(−8)=49+16=65x^6+y^6 = 7^2 - 2(-2)^3 = 49 - 2(-8) = 49 + 16 = 65x6+y6=72−2(−2)3=49−2(−8)=49+16=653. 最終的な答えxy=−2xy = -2xy=−2x2+y2=5x^2+y^2 = 5x2+y2=5x6+y6=65x^6+y^6 = 65x6+y6=65