2次方程式 $2x^2 - 4x + k = 0$ が異なる2つの実数解を持つような $k$ の値の範囲を求めます。

代数学二次方程式判別式不等式
2025/6/24

1. 問題の内容

2次方程式 2x24x+k=02x^2 - 4x + k = 0 が異なる2つの実数解を持つような kk の値の範囲を求めます。

2. 解き方の手順

2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 が異なる2つの実数解を持つための条件は、判別式 D=b24ac>0D = b^2 - 4ac > 0 であることです。
この問題の場合、a=2a = 2, b=4b = -4, c=kc = k なので、判別式 DD は次のようになります。
D=(4)24(2)(k)D = (-4)^2 - 4(2)(k)
D=168kD = 16 - 8k
異なる2つの実数解を持つためには、D>0D > 0 である必要があるので、
168k>016 - 8k > 0
この不等式を解きます。
16>8k16 > 8k
k<168k < \frac{16}{8}
k<2k < 2

3. 最終的な答え

k<2k < 2

「代数学」の関連問題

図に示された4本の直線①、②、③、④の式をそれぞれ求めます。

一次関数グラフ傾きy切片座標
2025/6/25

次の方程式を満たす $x$ の値を求めます。 $(200 \times \frac{100}{210} - 50) : (200 \times \frac{110}{210} - x) = 100 :...

方程式分数
2025/6/25

与えられた式 $S = -1 - 2 \cdot \frac{2(2^{n-1}-1)}{2-1} + (2n-1) \cdot 2^n$ を計算し、その結果が $(2n-3) \cdot 2^n +...

式の計算等式指数
2025/6/25

$x = \sqrt{5} + \sqrt{3}$、 $y = \sqrt{5} - \sqrt{3}$ のとき、$x^2y + xy^2$ の値を求めます。

式の計算因数分解平方根
2025/6/25

与えられた連立方程式 $\begin{cases} y - 4x = 11 \\ 8x - 3y = 25 \end{cases}$ を2通りの方法で解きます。

連立方程式代入法加減法一次方程式
2025/6/25

$x = \sqrt{5} + \sqrt{2}$、 $y = \sqrt{5} - \sqrt{2}$ のとき、以下の式の値を求めます。 (1) $xy$ (2) $x^2 - y^2$ (3) $...

式の計算平方根因数分解展開和と差の積
2025/6/25

問題は、式 $x^2y + xy^2$ を因数分解することです。

因数分解多項式
2025/6/25

与えられた条件が、別の条件に対する必要条件、十分条件、またはその両方であるかを判断する問題です。 (1) $a > 0$ かつ $b > 0$ であることは、$a + b > 0$ かつ $ab > ...

必要十分条件条件論理
2025/6/25

4次方程式 $x^4 + 3x^2 - 4 = 0$ を解きます。

方程式4次方程式二次方程式因数分解虚数解の公式
2025/6/25

以下の4つの一次方程式のグラフを描く問題です。 1. $3x - 2y = -6$

一次方程式グラフ座標平面
2025/6/25