関数 $f(x, y) = (x^2 + y^2)e^{x-y}$ の極値を求める。解析学多変数関数極値偏微分ヘッセ行列2025/6/241. 問題の内容関数 f(x,y)=(x2+y2)ex−yf(x, y) = (x^2 + y^2)e^{x-y}f(x,y)=(x2+y2)ex−y の極値を求める。2. 解き方の手順まず、偏導関数を計算する。fx=∂f∂x=2xex−y+(x2+y2)ex−y=(x2+y2+2x)ex−yf_x = \frac{\partial f}{\partial x} = 2xe^{x-y} + (x^2+y^2)e^{x-y} = (x^2 + y^2 + 2x)e^{x-y}fx=∂x∂f=2xex−y+(x2+y2)ex−y=(x2+y2+2x)ex−yfy=∂f∂y=2yex−y+(x2+y2)ex−y(−1)=(2y−x2−y2)ex−y=−(x2+y2−2y)ex−yf_y = \frac{\partial f}{\partial y} = 2ye^{x-y} + (x^2+y^2)e^{x-y}(-1) = (2y - x^2 - y^2)e^{x-y} = -(x^2 + y^2 - 2y)e^{x-y}fy=∂y∂f=2yex−y+(x2+y2)ex−y(−1)=(2y−x2−y2)ex−y=−(x2+y2−2y)ex−y極値を持つためには、以下の連立方程式を満たす必要がある。fx=0f_x = 0fx=0fy=0f_y = 0fy=0ex−ye^{x-y}ex−y は常に正であるから、x2+y2+2x=0x^2 + y^2 + 2x = 0x2+y2+2x=0x2+y2−2y=0x^2 + y^2 - 2y = 0x2+y2−2y=0これらの式を解く。x2+y2+2x=x2+y2−2yx^2 + y^2 + 2x = x^2 + y^2 - 2yx2+y2+2x=x2+y2−2y2x=−2y2x = -2y2x=−2yx=−yx = -yx=−yこれを x2+y2+2x=0x^2 + y^2 + 2x = 0x2+y2+2x=0 に代入すると、(−y)2+y2+2(−y)=0(-y)^2 + y^2 + 2(-y) = 0(−y)2+y2+2(−y)=02y2−2y=02y^2 - 2y = 02y2−2y=02y(y−1)=02y(y - 1) = 02y(y−1)=0y=0y = 0y=0 or y=1y = 1y=1y=0y = 0y=0 のとき、x=0x = 0x=0y=1y = 1y=1 のとき、x=−1x = -1x=−1したがって、停留点は (0,0)(0, 0)(0,0) と (−1,1)(-1, 1)(−1,1) である。次に、ヘッセ行列を計算する。fxx=∂2f∂x2=(2x+2+2x)ex−y+(x2+y2+2x)ex−y=(x2+y2+4x+2)ex−yf_{xx} = \frac{\partial^2 f}{\partial x^2} = (2x + 2 + 2x)e^{x-y} + (x^2 + y^2 + 2x)e^{x-y} = (x^2 + y^2 + 4x + 2)e^{x-y}fxx=∂x2∂2f=(2x+2+2x)ex−y+(x2+y2+2x)ex−y=(x2+y2+4x+2)ex−yfyy=∂2f∂y2=(−2y+2+2y)ex−y+(2y−x2−y2)ex−y(−1)=(x2+y2−4y+2)ex−yf_{yy} = \frac{\partial^2 f}{\partial y^2} = (-2y + 2 + 2y)e^{x-y} + (2y - x^2 - y^2)e^{x-y}(-1) = (x^2 + y^2 - 4y + 2)e^{x-y}fyy=∂y2∂2f=(−2y+2+2y)ex−y+(2y−x2−y2)ex−y(−1)=(x2+y2−4y+2)ex−yfxy=∂2f∂x∂y=(2y)ex−y+(2y−x2−y2)ex−y=(−2y)ex−y+(x2+y2+2x)ex−y(−1)+(2y−x2−y2)ex−y=(2x−2y)ex−y−(x2+y2+2x)ex−y=(x2+y2+2x)ex−y(−1)f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = (2y)e^{x-y} + (2y - x^2 - y^2)e^{x-y} = (-2y)e^{x-y} + (x^2 + y^2 + 2x)e^{x-y}(-1) + (2y -x^2 -y^2)e^{x-y} = (2x - 2y)e^{x-y} - (x^2 + y^2 + 2x)e^{x-y} = (x^2 + y^2 + 2x)e^{x-y}(-1)fxy=∂x∂y∂2f=(2y)ex−y+(2y−x2−y2)ex−y=(−2y)ex−y+(x2+y2+2x)ex−y(−1)+(2y−x2−y2)ex−y=(2x−2y)ex−y−(x2+y2+2x)ex−y=(x2+y2+2x)ex−y(−1)fyx=∂2f∂y∂x=(2x−2y)ex−yf_{yx} = \frac{\partial^2 f}{\partial y \partial x} = (2x - 2y)e^{x-y}fyx=∂y∂x∂2f=(2x−2y)ex−yfxy=∂2f∂x∂y=(2x−2y)ex−yf_{xy} = \frac{\partial^2 f}{\partial x \partial y} = (2x-2y)e^{x-y}fxy=∂x∂y∂2f=(2x−2y)ex−yfxy=(2−2)ex−y−(x2+y2+2x)ex−y=−(x2+y2−2y)ex−yf_{xy} = (2-2)e^{x-y} - (x^2 + y^2 + 2x)e^{x-y} = - (x^2 + y^2 - 2y)e^{x-y} fxy=(2−2)ex−y−(x2+y2+2x)ex−y=−(x2+y2−2y)ex−yしたがって、fxy=(2x−2y)ex−yf_{xy} = (2x - 2y)e^{x-y}fxy=(2x−2y)ex−yヘッセ行列式 D=fxxfyy−(fxy)2D = f_{xx}f_{yy} - (f_{xy})^2D=fxxfyy−(fxy)2点 (0,0)(0, 0)(0,0) においてfxx=2f_{xx} = 2fxx=2fyy=2f_{yy} = 2fyy=2fxy=0f_{xy} = 0fxy=0D=2⋅2−02=4>0D = 2 \cdot 2 - 0^2 = 4 > 0D=2⋅2−02=4>0fxx=2>0f_{xx} = 2 > 0fxx=2>0 なので、(0,0)(0, 0)(0,0) で極小値 f(0,0)=0f(0, 0) = 0f(0,0)=0 をとる。点 (−1,1)(-1, 1)(−1,1) においてfxx=(1+1−4+2)e−2=0f_{xx} = (1 + 1 - 4 + 2)e^{-2} = 0fxx=(1+1−4+2)e−2=0fyy=(1+1−4+2)e−2=0f_{yy} = (1 + 1 - 4 + 2)e^{-2} = 0fyy=(1+1−4+2)e−2=0fxy=(−2−2)e−2=−4e−2f_{xy} = (-2 - 2)e^{-2} = -4e^{-2}fxy=(−2−2)e−2=−4e−2D=0⋅0−(−4e−2)2=−16e−4<0D = 0 \cdot 0 - (-4e^{-2})^2 = -16e^{-4} < 0D=0⋅0−(−4e−2)2=−16e−4<0なので、(0,0)(0, 0)(0,0) は鞍点。3. 最終的な答え(0,0)(0, 0)(0,0) で極小値 0 をとる。(−1,1)(-1, 1)(−1,1) は鞍点。