与えられた2次方程式 $x^2 + 3x + 4 = 0$ を解く。

代数学二次方程式解の公式複素数
2025/6/24

1. 問題の内容

与えられた2次方程式 x2+3x+4=0x^2 + 3x + 4 = 0 を解く。

2. 解き方の手順

2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、解の公式を用いて求めることができる。解の公式は以下の通りである。
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
この問題では、a=1a = 1, b=3b = 3, c=4c = 4 である。これらの値を解の公式に代入する。
x=3±324(1)(4)2(1)x = \frac{-3 \pm \sqrt{3^2 - 4(1)(4)}}{2(1)}
x=3±9162x = \frac{-3 \pm \sqrt{9 - 16}}{2}
x=3±72x = \frac{-3 \pm \sqrt{-7}}{2}
7\sqrt{-7}i=1i = \sqrt{-1} を用いて i7i\sqrt{7} と表せる。したがって、
x=3±i72x = \frac{-3 \pm i\sqrt{7}}{2}

3. 最終的な答え

x=3+i72,3i72x = \frac{-3 + i\sqrt{7}}{2}, \frac{-3 - i\sqrt{7}}{2}

「代数学」の関連問題

一次関数の問題で、与えられた2点を通る一次関数の式を求めたり、別の一次関数との関係から条件を満たす値を求める問題です。 (1) 点$(0,c)$と$(2,6)$を通る一次関数について、$c=2$ のと...

一次関数連立方程式傾き切片文章題
2025/6/25

与えられた式は $1 = 3^{2x} + 1$ です。この式を解いて、$x$ の値を求めます。

指数関数方程式解の存在
2025/6/25

与えられた行列がユニタリ行列となるように、$a, b, c$ の値を求めよ。与えられた行列は以下の通りである。 $$ \begin{pmatrix} a & b & c \\ \frac{i}{\sq...

線形代数行列ユニタリ行列複素数
2025/6/25

C^3 のある基底が与えられているとき、シュミットの正規直交化法を用いて、標準的なエルミット内積に関して正規直交化せよ。 ただし、基底の具体的な内容は画像からは読み取れません。「a 0 d」という文字...

線形代数ベクトル空間内積エルミート内積正規直交化シュミットの正規直交化法
2025/6/25

与えられた3つの関数が、それぞれ奇関数、偶関数、またはどちらでもないかを判定する。 (1) $y = x^3 + 2x$ (2) $y = -x^4 + 3$ (3) $y = x^2 - x$

関数の性質偶関数奇関数
2025/6/25

与えられた二次関数について、指定されたxの範囲におけるyの最大値と最小値を求め、空欄を埋める問題です。 (1) $y = 2x^2 + 4x + 3$ ($ -2 \le x \le 2$) (2) ...

二次関数最大値最小値長方形方程式因数分解
2025/6/25

与えられた数列の和を求める問題です。数列は $1^2 \cdot 2 + 2^2 \cdot 3 + 3^2 \cdot 4 + \cdots + n^2(n+1)$ で表されます。すなわち、$\su...

数列級数シグマ計算公式
2025/6/25

行列 $A = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$ と $B = \begin{pmatrix} 4 & 0 & -1 \\ -1 & 3 ...

行列逆行列行列式掃き出し法
2025/6/25

ある投資顧問会社が、2つの投資案A(年10%のリターン)とB(年20%のリターン)を顧客に提供している。顧客は投資資金をAとBに分割して投資し、総投資額と希望年間収益を達成したい。3人の顧客について、...

線形代数連立方程式行列逆行列投資
2025/6/25

ある放物線をx軸方向に1、y軸方向に-2だけ平行移動したところ、$y = -2x^2 + 3x - 1$になった。元の放物線の方程式を求めよ。

放物線平行移動二次関数
2025/6/25